A posteriori error estimates of finite element method for the time-dependent Navier-Stokes equations

被引:6
|
作者
Zhang, Tong [1 ,2 ]
Li, ShiShun [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
[2] Univ Fed Parana, Dept Matemat, Ctr Politecn, BR-81531990 Curitiba, Parana, Brazil
关键词
Posteriori error estimates; Time-dependent Navier Stokes equations; Navier Stokes reconstruction; Backward Euler scheme; ELLIPTIC RECONSTRUCTION; NONLINEAR PROBLEMS; DISCRETIZATIONS; APPROXIMATIONS;
D O I
10.1016/j.amc.2017.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the posteriori error estimates of Galerkin finite element method for the unsteady Navier-Stokes equations. By constructing the approximate Navier-Stokes reconstructions, the errors of velocity and pressure are split into two parts. For the estimates of time part, the energy method and other skills are used, for the estimates of spatial part, the well-developed theoretical analysis of posteriori error estimates for the elliptic problem can be adopted. More important, the error estimates of time part can be controlled by the estimates of spatial part. As a consequence, the posteriori error estimates in L-infinity(0, T; L-2(Omega)),L-infinity(0, T; H-1(Omega)) and L-2(0, T; L-2(Omega)) norms for velocity and pressure are derived in both spatial discrete and time-space fully discrete schemes. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:13 / 26
页数:14
相关论文
共 50 条
  • [21] A posteriori least-squares finite element error analysis for the Navier-Stokes equations
    Jou, J
    Liu, JL
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (1-2) : 67 - 74
  • [22] Error Estimates of Mixed Finite Element Methods for Time-Fractional Navier-Stokes Equations
    Li, Xiaocui
    Yang, Xiaoyuan
    Zhang, Yinghan
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) : 500 - 515
  • [23] Error estimates of finite element methods for fractional stochastic Navier-Stokes equations
    Li, Xiaocui
    Yang, Xiaoyuan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [24] Superconvergent analysis of a nonconforming mixed finite element method for time-dependent damped Navier-Stokes equations
    Qian, Liu
    Dongyang, Shi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (01):
  • [25] A Stabilized Characteristic-Nonconforming Finite Element Method for Time-Dependent Incompressible Navier-Stokes Equations
    Jia, Huiyong
    Li, Kaitai
    Jia, Hongen
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) : 207 - 230
  • [26] Viscosity explicit analysis for finite element methods of time-dependent Navier-Stokes equations
    Xie, Cong
    Wang, Kun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392
  • [27] A POSTERIORI ERROR ESTIMATES FOR THE STATIONARY NAVIER-STOKES EQUATIONS WITH DIRAC MEASURES
    Allendes, Alejandro
    Otarola, Enrique
    Salgado, Abner J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : A1860 - A1884
  • [28] A POSTERIORI ESTIMATES FOR EULER AND NAVIER-STOKES EQUATIONS
    Morosi, Carlo
    Pernici, Mario
    Pizzocchero, Livid
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 847 - 855
  • [29] ON ERROR ESTIMATES OF THE PRESSURE-CORRECTION PROJECTION METHODS FOR THE TIME-DEPENDENT NAVIER-STOKES EQUATIONS
    Sun, Haiyan
    He, Yinnian
    Feng, Xinlong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (01) : 70 - 85
  • [30] A posteriori error estimates in a finite element VMS-based reduced order model for the incompressible Navier-Stokes equations
    Codina, Ramon
    Reyes, Ricardo
    Baiges, Joan
    MECHANICS RESEARCH COMMUNICATIONS, 2021, 112