On the diophantine equation -: (x3-1)/(x-1)=(yn-1)/(y-1)

被引:18
|
作者
Le, MH [1 ]
机构
[1] Zhanjiang Teachers Coll, Dept Math, Zhanjiang, Guangdong, Peoples R China
关键词
D O I
10.1090/S0002-9947-99-02013-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that the equation (x(3) - 1)/(x - 1) = (y(n) - 1)/(y - 1), x,y,n is an element of N, x > 1, y > 1, n > 3, has only the solutions (x, y,n) = (5, 2, 5) and (90,2,13) with y is a prime power. The proof depends on some new results concerning the upper bounds for the number of solutions of the generalized Ramanujan-Nagell equations.
引用
收藏
页码:1063 / 1074
页数:12
相关论文
共 50 条
  • [21] On the Diophantine equation cyl = xp-1/x-1
    Sadek, Mohammad
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (02): : 373 - 378
  • [22] On the diophantine equation xn-1/x-1=yq
    Bugeaud, Y
    Mignotte, M
    Roy, Y
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 193 (02) : 257 - 268
  • [23] On the Diophantine equation a(xn-1)/(x-1) = yq
    Bugeaud, Y
    NUMBER THEORY, 2001, : 19 - 24
  • [24] On the Diophantine equation (xn-1)/(x-1)=yq with negative x
    Bugeaud, Y
    Mignotte, M
    NUMBER THEORY FOR THE MILLENNIUM I, 2002, : 145 - 151
  • [25] The Diophantine equation x(x+1)... (x+(m-1))+r=yn
    Bilu, YF
    Kulkarni, M
    Sury, B
    ACTA ARITHMETICA, 2004, 113 (04) : 303 - 308
  • [26] The exceptional solutions of Goormaghtigh's equation x3 - 1/x -1 = yn - 1/y - 1
    Le, M.
    Jishou Daxue Xuebao/Journal of Jishou University, 2001, 22 (01): : 29 - 32
  • [27] THE DIOPHANTINE EQUATION X(X+1)=Y(Y2+1)
    COHN, JHE
    MATHEMATICA SCANDINAVICA, 1991, 68 (02) : 171 - 179
  • [28] A note on the Diophantine equation (xp-1)/(x-1) = peyq
    Han Di
    Guan Wenji
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2014, 57 (01): : 35 - 43
  • [29] On the diophantine equation xn-1/x-1=yq, II
    Bugeaud, Y
    Mignotte, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (09): : 741 - 744
  • [30] 关于方程(x(x-1)/2)=y(y-1)/2的初等解法
    曹珍富
    邓谋杰
    黎进香
    不详
    科学通报 , 1994, (07) : 670 - 670