Experimental Study of Crushed Granular Materials by the Notion of Fractal Dimension in 2D and 3D

被引:5
|
作者
Bouzeboudja, Houria [1 ]
Melbouci, Bachir [1 ]
Bouzeboudja, Aldjia [1 ]
机构
[1] Mouloud Mammeri Univ Tizi Ouzou, Geomat Lab, Environm & Dev, Tizi Ouzou 15000, Algeria
关键词
Granular materials; Crushing; Mechanical tests; Fractal dimension; 2D and 3D; TEXTURE ANALYSIS; SURFACE; MODEL; FRAGMENTATION; ROUGHNESS; BEHAVIOR; SOILS;
D O I
10.1007/s10706-021-02007-3
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The micro-texture of the aggregates of a pavement layer has a direct influence on their resistance. Whatever the position of these aggregates in a pavement structure, they must withstand, during construction or during life, the stresses of attrition and impact. In this study, a series of mechanical tests (Proctor, Los-Angeles and Micro-Deval) are carried out on grains of local materials (limestone and shale), the degree of crushing of the grains has been quantified using the concept of fractal dimension. The fractal dimension was calculated for the different grains constituting the samples before and after each test, with the use of two two-dimensional 2D methods (Masses Method at the scale of a sample and the Box Counting Method at the scale of a grain) and a three-dimensional 3D method (Blanket on a grain scale) which is based on the use of the difference between erosion and dilation. We seek to determine from these methods the correlation between the two fractal dimensions, namely 2D and 3D and study the influence of different parameters on the mechanical characteristics of the materials chosen: the shape and size of the grains, the presence or absence of water, the stress intensity as well as the nature of the material. The results obtained show that the three-dimensional method has a positive effect on the description of the 3D microstructure of the surface of the grains subjected to the various mechanical tests.
引用
收藏
页码:2009 / 2031
页数:23
相关论文
共 50 条
  • [41] Wafer-scale 3D Integration of 2D Materials
    Das, Saptarshi
    2024 INTERNATIONAL VLSI SYMPOSIUM ON TECHNOLOGY, SYSTEMS AND APPLICATIONS, VLSI TSA, 2024,
  • [42] 3D to 2D Routes to Ultrathin and Expanded Zeolitic Materials
    Chlubna, Pavla
    Roth, Wieslaw J.
    Greer, Heather F.
    Zhou, Wuzong
    Shvets, Oleksiy
    Zukal, Arnost
    Cejka, Jiri
    Morris, Russell E.
    CHEMISTRY OF MATERIALS, 2013, 25 (04) : 542 - 547
  • [43] ROTATIONAL 2D AND 3D SOLITONS IN MAGNETIC-MATERIALS
    IVANOV, BA
    JETP LETTERS, 1992, 56 (02) : 118 - 121
  • [44] 3D Manipulation of 2D Materials Using Microdome Polymer
    Wakafuji, Yusai
    Moriya, Rai
    Masubuchi, Satoru
    Watanabe, Kenji
    Taniguchi, Takashi
    Machida, Tomoki
    NANO LETTERS, 2020, 20 (04) : 2486 - 2492
  • [45] Giant Thermal Expansion in 2D and 3D Cellular Materials
    Zhu, Hanxing
    Fan, Tongxiang
    Peng, Qing
    Zhang, Di
    ADVANCED MATERIALS, 2018, 30 (18)
  • [46] Chirality measure for 2D and 3D meta-materials
    Boruhovich, Serge P.
    MMET 2006: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, CONFERENCE PROCEEDINGS, 2006, : 418 - 420
  • [47] Interfacing graphene and related 2D materials with the 3D world
    Tomanek, David
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (13)
  • [48] Investigation of the Thermal Conductivity of Materials in 2D/3D Heterostructures
    Kaya, Onurcan
    Donmezer, Nazli
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE NANO 2021), 2021, : 374 - 377
  • [49] 2D and 3D graphene materials: Preparation and bioelectrochemical applications
    Gao, Hongcai
    Duan, Hongwei
    BIOSENSORS & BIOELECTRONICS, 2015, 65 : 404 - 419
  • [50] 3D and 2D/3D holograms model
    A. A. Boriskevich
    V. K. Erohovets
    V. V. Tkachenko
    Optical Memory and Neural Networks, 2012, 21 (4) : 242 - 248