INEXACT NEWTON METHOD FOR M-TENSOR EQUATIONS

被引:0
|
作者
Li, Dong-Hui [1 ]
Guan, Hong-Bo [1 ,2 ]
Xu, Jie-Feng [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Hunan Inst Technol, Sch Math Sci & Energy Engn, Hengyang 421002, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2021年 / 17卷 / 04期
关键词
M-tensor equation; inexact Newton method; global convergence; quadratic convergence; SOLVING MULTILINEAR SYSTEMS; NONNEGATIVE SOLUTION; ALGORITHM;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We first investigate properties of M-tensor equations. In particular, we show that if the constant term of the equation is nonnegative, then finding a nonnegative solution of the equation can be done by finding a positive solution of a lower dimensional M-tensor equation. We then propose an inexact Newton method to find a positive solution to the lower dimensional equation and establish its global convergence. We also show that the convergence rate of the method is quadratic. At last, we do numerical experiments to test the proposed Newton method. The results show that the proposed Newton method has a very good numerical performance.
引用
收藏
页码:617 / 643
页数:27
相关论文
共 50 条
  • [31] Inexact Newton's method with inner implicit preconditioning for algebraic Riccati equations
    Chehab, Jean-Paul
    Raydan, Marcos
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (02): : 955 - 969
  • [32] Some superlinearly convergent inexact generalized Newton method for solving nonsmooth equations
    Smietanski, Marek J.
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (03): : 405 - 417
  • [33] THE PERFECT M-TENSOR PRODUCT OF PERFECT BANACH-LATTICES
    VUZA, D
    LECTURE NOTES IN MATHEMATICS, 1983, 991 : 272 - 295
  • [34] Parameter selection for inexact Newton method
    Luzanin, Z
    Herceg, D
    Krejic, N
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) : 17 - 24
  • [35] Theoretical Efficiency of an Inexact Newton Method
    N. Y. Deng
    Z. Z. Wang
    Journal of Optimization Theory and Applications, 2000, 105 : 97 - 112
  • [36] Parameter selection for inexact Newton method
    Faculty of Engineering, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad
    不详
    Nonlinear Anal Theory Methods Appl, 1 PART 1 (17-24):
  • [37] A nonmonotone semismooth inexact Newton method
    Bonettini, Silvia
    Tinti, Federica
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (04): : 637 - 657
  • [38] Theoretical efficiency of an inexact Newton method
    Deng, NY
    Wang, ZZ
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 105 (01) : 97 - 112
  • [39] Inexact-Newton method for solving operator equations in infinite-dimensional spaces
    Liu J.
    Gao Y.
    Journal of Applied Mathematics and Computing, 2006, 22 (1-2) : 351 - 360
  • [40] A globally convergent Inexact-Newton method for solving reducible nonlinear systems of equations
    Krejic, N
    Martínez, JM
    OPTIMIZATION METHODS & SOFTWARE, 2000, 13 (01): : 11 - 34