INEXACT NEWTON METHOD FOR M-TENSOR EQUATIONS

被引:0
|
作者
Li, Dong-Hui [1 ]
Guan, Hong-Bo [1 ,2 ]
Xu, Jie-Feng [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Hunan Inst Technol, Sch Math Sci & Energy Engn, Hengyang 421002, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2021年 / 17卷 / 04期
关键词
M-tensor equation; inexact Newton method; global convergence; quadratic convergence; SOLVING MULTILINEAR SYSTEMS; NONNEGATIVE SOLUTION; ALGORITHM;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We first investigate properties of M-tensor equations. In particular, we show that if the constant term of the equation is nonnegative, then finding a nonnegative solution of the equation can be done by finding a positive solution of a lower dimensional M-tensor equation. We then propose an inexact Newton method to find a positive solution to the lower dimensional equation and establish its global convergence. We also show that the convergence rate of the method is quadratic. At last, we do numerical experiments to test the proposed Newton method. The results show that the proposed Newton method has a very good numerical performance.
引用
收藏
页码:617 / 643
页数:27
相关论文
共 50 条
  • [21] A new preconditioned SOR method for solving multi-linear systems with an M-tensor
    Liu, Dongdong
    Li, Wen
    Vong, Seak-Weng
    CALCOLO, 2020, 57 (02)
  • [22] Convergence of inexact Newton methods for generalized equations
    A. L. Dontchev
    R. T. Rockafellar
    Mathematical Programming, 2013, 139 : 115 - 137
  • [23] INEXACT NEWTON METHODS FOR SOLVING NONSMOOTH EQUATIONS
    MARTINEZ, JM
    QI, LQ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 60 (1-2) : 127 - 145
  • [24] Quasi-newton preconditioners for the inexact Newton method
    Bergamaschi, L.
    Bru, R.
    Martínez, A.
    Putti, M.
    Electronic Transactions on Numerical Analysis, 2006, 23 : 76 - 87
  • [25] Inexact Newton’s method with inner implicit preconditioning for algebraic Riccati equations
    Jean-Paul Chehab
    Marcos Raydan
    Computational and Applied Mathematics, 2017, 36 : 955 - 969
  • [26] Solving the nonlinear power flow equations with an inexact Newton method using GMRES
    Flueck, AJ
    Chiang, HD
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (02) : 267 - 273
  • [27] Newton's method with feasible inexact projections for solving constrained generalized equations
    de Oliveira, Fabiana R.
    Ferreira, Orizon P.
    Silva, Gilson N.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 72 (01) : 159 - 177
  • [28] Newton’s method with feasible inexact projections for solving constrained generalized equations
    Fabiana R. de Oliveira
    Orizon P. Ferreira
    Gilson N. Silva
    Computational Optimization and Applications, 2019, 72 : 159 - 177
  • [29] Global inexact quasi-Newton method for nonlinear system of equations with constraints
    Arias, C. A.
    Martinez, H. J.
    Perez, R.
    APPLIED NUMERICAL MATHEMATICS, 2020, 150 (150) : 559 - 575
  • [30] Quasi-Newton preconditioners for the inexact Newton method
    Bergamaschi, L.
    Bru, R.
    Martinez, A.
    Putti, M.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 23 : 76 - 87