Comprehensive Evaluation of Machine Learning Techniques for Hydrological Drought Forecasting

被引:29
|
作者
Jehanzaib, Muhammad [1 ]
Idrees, Muhammad Bilal [2 ]
Kim, Dongkyun [3 ]
Kim, Tae-Woong [4 ]
机构
[1] Hanyang Univ, Res Inst Engn & Technol, Ansan 15588, South Korea
[2] Hanyang Univ, Dept Civil & Environm Engn, Seoul 04763, South Korea
[3] Hongik Univ, Dept Civil Engn, Seoul 04066, South Korea
[4] Hanyang Univ, Dept Civil & Environm Engn, Ansan 15588, South Korea
基金
新加坡国家研究基金会;
关键词
Drought forecasting; Machine learning (ML); Standardized runoff index (SRI); Decision tree (DT); METEOROLOGICAL DROUGHT; RIVER-BASIN; MODEL;
D O I
10.1061/(ASCE)IR.1943-4774.0001575
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Drought is among the most hazardous climatic disasters that significantly influence various aspects of the environment and human life. Qualitative and reliable drought forecasting is important worldwide for effective planning and decision-making in disaster-prone regions. Data-driven models have been extensively used for drought forecasting, but due to the inadequacy of information on model performance, the selection of an appropriate forecasting model remains a challenge. This study concerns a comparative analysis of six machine learning (ML) techniques widely used for hydrological drought forecasting. The standardized runoff index (SRI) was calculated at a seasonal (3-month) time scale for the period 1973 to 2016 in four selected watersheds of the Han River basin in South Korea. The ML models employed were built-ins, using precipitation, temperature, and humidity as input variables and the SRI as the target variable. The results indicated that all the ML models were able to map the relationship for seasonal SRI using the applied input vectors. The decision tree (DT) technique outperformed in all the watersheds with an average mean absolute error (MAE) = 0.26, root mean square error (RMSE) = 0.34, Nash-Sutcliffe efficiency (NSE) = 0.87, and coefficient of determination (R-2) = 0.89. The performances of the support vector machine (SVM) and deep learning neural network (DLNN) were similar, whereas the fuzzy rule-based system (FRBS) performed very well compared to the artificial neural network (ANN) and the adaptive neuro-fuzzy inference system (ANFIS). The overall findings of this study indicate that, considering performance criteria and computation time, the DT was the most accurate ML technique for hydrological drought forecasting in the Han River basin. (C) 2021 American Society of Civil Engineers.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Forecasting drought using machine learning: a systematic literature review
    Oyarzabal, Ricardo S.
    Santos, Leonardo B. L.
    Cunningham, Christopher
    Broedel, Elisangela
    de Lima, Glauston R. T.
    Cunha-Zeri, Gisleine
    Peixoto, Jerusa S.
    Anochi, Juliana A.
    Garcia, Klaifer
    Costa, Lidiane C. O.
    Pampuch, Luana A.
    Cuartas, Luz Adriana
    Zeri, Marcelo
    Guedes, Marcia R. G.
    Negri, Rogerio G.
    Munoz, Viviana A.
    Cunha, Ana Paula M. A.
    NATURAL HAZARDS, 2025,
  • [32] Forecasting of meteorological drought using ensemble and machine learning models
    Pande, Chaitanya Baliram
    Sidek, Lariyah Mohd
    Varade, Abhay M.
    Elkhrachy, Ismail
    Radwan, Neyara
    Tolche, Abebe Debele
    Elbeltagi, Ahmed
    ENVIRONMENTAL SCIENCES EUROPE, 2024, 36 (01)
  • [33] Understanding and seasonal forecasting of hydrological drought in the Anthropocene
    Yuan, Xing
    Zhang, Miao
    Wang, Linying
    Zhou, Tian
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (11) : 5477 - 5492
  • [34] Stock Price Forecasting Using Machine Learning Techniques
    Ustali, Nesrin Koc
    Tosun, Nedret
    Tosun, Omur
    ESKISEHIR OSMANGAZI UNIVERSITESI IIBF DERGISI-ESKISEHIR OSMANGAZI UNIVERSITY JOURNAL OF ECONOMICS AND ADMINISTRATIVE SCIENCES, 2021, 16 (01): : 1 - 16
  • [35] Comparison of machine learning techniques for reservoir outflow forecasting
    Garcia-Feal, Orlando
    Gonzalez-Cao, Jose
    Fernandez-Novoa, Diego
    Astray Dopazo, Gonzalo
    Gomez-Gesteira, Moncho
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2022, 22 (12) : 3859 - 3874
  • [36] Forecasting atrial fibrillation using machine learning techniques
    Gregoire, J. -M.
    Subramanian, N.
    Papazian, D.
    Bersini, H.
    EUROPEAN HEART JOURNAL, 2019, 40 : 4163 - 4163
  • [37] Machine learning techniques applied to solar flares forecasting
    Ribeiro, F.
    Gradvohl, A. L. S.
    ASTRONOMY AND COMPUTING, 2021, 35
  • [38] Using machine learning techniques to combine forecasting methods
    Prudêncio, R
    Ludermir, T
    AI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3339 : 1122 - 1127
  • [39] Forecasting of sales by using fusion of Machine Learning techniques
    Gurnani, Mohit
    Korkey, Yogesh
    Shah, Prachi
    Udmale, Sandeep
    Sambhe, Vijay
    Bhirud, Sunil
    2017 1ST IEEE INTERNATIONAL CONFERENCE ON DATA MANAGEMENT, ANALYTICS AND INNOVATION (ICDMAI), 2017, : 93 - 101
  • [40] CryptoAnalytics: Cryptocoins price forecasting with machine learning techniques
    De Rosa, Pasquale
    Felber, Pascal
    Schiavoni, Valerio
    SOFTWAREX, 2024, 26