Surface loss simulations of superconducting coplanar waveguide resonators

被引:135
|
作者
Wenner, J. [1 ]
Barends, R. [1 ]
Bialczak, R. C. [1 ]
Chen, Yu [1 ]
Kelly, J. [1 ]
Lucero, Erik [1 ]
Mariantoni, Matteo [1 ]
Megrant, A. [1 ]
O'Malley, P. J. J. [1 ]
Sank, D. [1 ]
Vainsencher, A. [1 ]
Wang, H. [1 ,2 ]
White, T. C. [1 ]
Yin, Y. [1 ]
Zhao, J. [1 ]
Cleland, A. N. [1 ]
Martinis, John M. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
关键词
CAVITY; QUBITS;
D O I
10.1063/1.3637047
中图分类号
O59 [应用物理学];
学科分类号
摘要
Losses in superconducting planar resonators are presently assumed to predominantly arise from surface-oxide dissipation, due to experimental losses varying with choice of materials. We model and simulate the magnitude of the loss from interface surfaces in the resonator and investigate the dependence on power, resonator geometry, and dimensions. Surprisingly, the dominant surface loss is found to arise from the metal-substrate and substrate-air interfaces. This result will be useful in guiding device optimization, even with conventional materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3637047]
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Low-loss α-tantalum coplanar waveguide resonators on silicon wafers: fabrication, characterization and surface modification
    Lozano, D. P.
    Mongillo, M.
    Piao, X.
    Couet, S.
    Wan, D.
    Canvel, Y.
    Vadiraj, A. M.
    Ivanov, Ts
    Verjauw, J.
    Acharya, R.
    Van Damme, J.
    Mohiyaddin, F. A.
    Jussot, J.
    Gowda, P. P.
    Pacco, A.
    Raes, B.
    van de Vondel, J.
    Radu, I. P.
    Govoreanu, B.
    Swerts, J.
    Potocnik, A.
    De Greve, K.
    MATERIALS FOR QUANTUM TECHNOLOGY, 2024, 4 (02):
  • [32] Helium Surface Fluctuations Investigated with Superconducting Coplanar Waveguide Resonator
    Beysengulov, N. R.
    Mikolas, C. A.
    Kitzman, J. M.
    Lane, J. R.
    Edmunds, D.
    Rees, D. G.
    Henriksen, E. A.
    Lyon, S. A.
    Pollanen, J.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2022, 208 (5-6) : 482 - 491
  • [33] Helium Surface Fluctuations Investigated with Superconducting Coplanar Waveguide Resonator
    N. R. Beysengulov
    C. A. Mikolas
    J. M. Kitzman
    J. R. Lane
    D. Edmunds
    D. G. Rees
    E. A. Henriksen
    S. A. Lyon
    J. Pollanen
    Journal of Low Temperature Physics, 2022, 208 : 482 - 491
  • [34] Calculation of loss in conductors of a superconducting shielded slotted line and a coplanar waveguide
    Zelenchuk, D.E.
    Lerer, A.M.
    Radiotekhnika i Elektronika, 2002, 47 (11): : 1346 - 1353
  • [35] Calculation of loss in conductors of a superconducting shielded slotted line and a coplanar waveguide
    Zelenchuk, DE
    Lerer, AM
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2002, 47 (11) : 1229 - 1235
  • [36] Fabrication and characterization of magnetic-field-resilient MoRe superconducting coplanar waveguide resonators
    Yu, Chang Geun
    Kim, Bongkeon
    Doh, Yong-Joo
    CURRENT APPLIED PHYSICS, 2023, 47 : 24 - 29
  • [37] Quality factors of coplanar waveguide resonators
    Wu, Xiangying
    Awai, Ikuo
    Yan, Zhongyou
    Wada, Kouji
    Moriyoshi, Takeshi
    Asia-Pacific Microwave Conference Proceedings, APMC, 1999, 3 : 670 - 673
  • [38] Superconducting coplanar waveguide resonators for low temperature pulsed electron spin resonance spectroscopy
    Malissa, H.
    Schuster, D. I.
    Tyryshkin, A. M.
    Houck, A. A.
    Lyon, S. A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (02):
  • [39] Fabrication and surface treatment of electron-beam evaporated niobium for low-loss coplanar waveguide resonators
    Kowsari, D.
    Zheng, K.
    Monroe, J. T.
    Thobaben, N. J.
    Du, X.
    Harrington, P. M.
    Henriksen, E. A.
    Wisbey, D. S.
    Murch, K. W.
    APPLIED PHYSICS LETTERS, 2021, 119 (13) : 1ENG
  • [40] Effects of device geometry and material properties on dielectric losses in superconducting coplanar-waveguide resonators
    Lahtinen, V
    Mottonen, M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (40)