Surface loss simulations of superconducting coplanar waveguide resonators

被引:135
|
作者
Wenner, J. [1 ]
Barends, R. [1 ]
Bialczak, R. C. [1 ]
Chen, Yu [1 ]
Kelly, J. [1 ]
Lucero, Erik [1 ]
Mariantoni, Matteo [1 ]
Megrant, A. [1 ]
O'Malley, P. J. J. [1 ]
Sank, D. [1 ]
Vainsencher, A. [1 ]
Wang, H. [1 ,2 ]
White, T. C. [1 ]
Yin, Y. [1 ]
Zhao, J. [1 ]
Cleland, A. N. [1 ]
Martinis, John M. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
关键词
CAVITY; QUBITS;
D O I
10.1063/1.3637047
中图分类号
O59 [应用物理学];
学科分类号
摘要
Losses in superconducting planar resonators are presently assumed to predominantly arise from surface-oxide dissipation, due to experimental losses varying with choice of materials. We model and simulate the magnitude of the loss from interface surfaces in the resonator and investigate the dependence on power, resonator geometry, and dimensions. Surprisingly, the dominant surface loss is found to arise from the metal-substrate and substrate-air interfaces. This result will be useful in guiding device optimization, even with conventional materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3637047]
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Determining Interface Dielectric Losses in Superconducting Coplanar-Waveguide Resonators
    Woods, W.
    Calusine, G.
    Melville, A.
    Sevi, A.
    Golden, E.
    Kim, D. K.
    Rosenberg, D.
    Yoder, J. L.
    Oliver, W. D.
    PHYSICAL REVIEW APPLIED, 2019, 12 (01):
  • [22] Power Handling and Responsivity of Submicron Wide Superconducting Coplanar Waveguide Resonators
    R. M. J. Janssen
    A. Endo
    J. J. A. Baselmans
    P. J. de Visser
    R. Barends
    T. M. Klapwijk
    Journal of Low Temperature Physics, 2012, 167 : 354 - 359
  • [23] Superconducting tunable filter with constant bandwidth using coplanar waveguide resonators
    Jiang, Ying
    Li, Bo
    Wei, Bin
    Guo, Xu-Bo
    Cao, Bi-Song
    Jiang, Li-Nan
    CHINESE PHYSICS B, 2017, 26 (10)
  • [24] Experimental demonstrations of high-Q superconducting coplanar waveguide resonators
    Li HaiJie
    Wang YiWen
    Wei LianFu
    Zhou PinJia
    Wei Qiang
    Cao ChunHai
    Fang YuRong
    Yu Yang
    Wu PeiHeng
    CHINESE SCIENCE BULLETIN, 2013, 58 (20): : 2413 - 2417
  • [25] Loss Dependence on Geometry and Applied Power in Superconducting Coplanar Resonators
    Khalil, Moe S.
    Wellstood, F. C.
    Osborn, Kevin D.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2011, 21 (03) : 879 - 882
  • [26] Room temperature deposition of sputtered TiN films for superconducting coplanar waveguide resonators
    Ohya, S.
    Chiaro, B.
    Megrant, A.
    Neill, C.
    Barends, R.
    Chen, Y.
    Kelly, J.
    Low, D.
    Mutus, J.
    O'Malley, P. J. J.
    Roushan, P.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Yin, Y.
    Schultz, B. D.
    Palmstrom, C. J.
    Mazin, B. A.
    Cleland, A. N.
    Martinis, John M.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2014, 27 (01):
  • [27] Microwave Transmissions through Superconducting Coplanar Waveguide Resonators with Different Coupling Configurations
    Zhang Si-Lei
    Li Hai-Jie
    Wei Lian-Fu
    Fang Yu-Rong
    Wang Yi-Wen
    Zhou Pin-Jia
    Wei Qiang
    Cao Chun-Hai
    Xiong Xiang-Zheng
    CHINESE PHYSICS LETTERS, 2013, 30 (08)
  • [28] Non-linearity in superconducting coplanar waveguide rectangular-spiral resonators
    Javadzadeh, S. Mohammad Hassan
    Bruno, Alessandro
    Farzaneh, Forouhar
    Fardmanesh, Mehdi
    IET MICROWAVES ANTENNAS & PROPAGATION, 2015, 9 (03) : 230 - 236
  • [29] Microwave Transmissions through Superconducting Coplanar Waveguide Resonators with Different Coupling Configurations
    张思磊
    李海杰
    韦联福
    房玉荣
    王轶文
    周品嘉
    韦强
    曹春海
    熊祥正
    Chinese Physics Letters, 2013, 30 (08) : 206 - 208
  • [30] Loss Mechanisms of Epitaxial NbN Coplanar Waveguide Resonators on an MgO Substrate
    Watanabe, Kohki
    Kutsuma, Hiroki
    Kim, Sunmi
    Yamashita, Taro
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2025, 35 (05)