Discover mouse gene coexpression landscapes using dictionary learning and sparse coding

被引:6
|
作者
Li, Yujie [1 ,2 ]
Chen, Hanbo [1 ,2 ]
Jiang, Xi [1 ,2 ]
Li, Xiang [1 ,2 ]
Lv, Jinglei [1 ,2 ,3 ]
Peng, Hanchuan [4 ]
Tsien, Joe Z. [5 ]
Liu, Tianming [1 ,2 ]
机构
[1] Univ Georgia, Dept Comp Sci, Cort Architecture Imaging & Discovery Lab, Athens, GA 30602 USA
[2] Univ Georgia, Bioimaging Res Ctr, Athens, GA 30602 USA
[3] Northwestern Polytech Univ, Sch Automat, Xian, Shaanxi, Peoples R China
[4] Allen Inst Brain Sci, Seattle, WA 98109 USA
[5] Augusta Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA 30912 USA
来源
BRAIN STRUCTURE & FUNCTION | 2017年 / 222卷 / 09期
关键词
Gene coexpression network; Sparse coding; Transcriptome; HUMAN BRAIN; EXPRESSION PATTERNS; TRANSCRIPTOME; ARCHITECTURE; NETWORK; CORTEX; DIFFERENTIATION; HIPPOCAMPUS; ENRICHMENT; EVOLUTION;
D O I
10.1007/s00429-017-1460-9
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Gene coexpression patterns carry rich information regarding enormously complex brain structures and functions. Characterization of these patterns in an unbiased, integrated, and anatomically comprehensive manner will illuminate the higher-order transcriptome organization and offer genetic foundations of functional circuitry. Here using dictionary learning and sparse coding, we derived coexpression networks from the space-resolved anatomical comprehensive in situ hybridization data from Allen Mouse Brain Atlas dataset. The key idea is that if two genes use the same dictionary to represent their original signals, then their gene expressions must share similar patterns, thereby considering them as "coexpressed." For each network, we have simultaneous knowledge of spatial distributions, the genes in the network and the extent a particular gene conforms to the coexpression pattern. Gene ontologies and the comparisons with published gene lists reveal biologically identified coexpression networks, some of which correspond to major cell types, biological pathways, and/or anatomical regions.
引用
收藏
页码:4253 / 4270
页数:18
相关论文
共 50 条
  • [41] Efficient algorithm for sparse coding and dictionary learning with applications to face recognition
    Zhao, Zhong
    Feng, Guocan
    JOURNAL OF ELECTRONIC IMAGING, 2015, 24 (02)
  • [42] SEPARABLE DICTIONARY LEARNING FOR CONVOLUTIONAL SPARSE CODING VIA SPLIT UPDATES
    Quesada, Jorge
    Rodriguez, Paul
    Wohlberg, Brendt
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4094 - 4098
  • [43] Sparse coding with adaptive dictionary learning for underdetermined blind speech separation
    Xu, Tao
    Wang, Wenwu
    Dai, Wei
    SPEECH COMMUNICATION, 2013, 55 (03) : 432 - 450
  • [44] Hyperspectral Image Denoising Based on Spectral Dictionary Learning and Sparse Coding
    Song, Xiaorui
    Wu, Lingda
    Hao, Hongxing
    Xu, Wanpeng
    ELECTRONICS, 2019, 8 (01)
  • [45] Group-based Sparse Coding Dictionary Learning for Object Recognition
    Zhao, Yanqin
    Li, Jinhua
    Zhong, Zhun
    PROCEEDINGS OF 2014 IEEE WORKSHOP ON ADVANCED RESEARCH AND TECHNOLOGY IN INDUSTRY APPLICATIONS (WARTIA), 2014, : 331 - 334
  • [46] Sparse coding and dictionary learning with class-specific group sparsity
    Sun, Yuping
    Quan, Yuhui
    Fu, Jia
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (04): : 1265 - 1275
  • [47] Reconstruction of high spectral resolution multispectral image using dictionary-based learning and sparse coding
    Ghosh, Dipanwita
    Chakravortty, Somdatta
    GEOCARTO INTERNATIONAL, 2022, 37 (25) : 10798 - 10818
  • [48] Supervised dictionary learning for blind image quality assessment using quality-constraint sparse coding
    Jiang, Qiuping
    Shao, Feng
    Jiang, Gangyi
    Yu, Mei
    Peng, Zongju
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 33 : 123 - 133
  • [49] A Novel Learning Dictionary for Sparse Coding-Based Key Point Detection
    Hong, Phuoc-Thanh
    Guan, Ling
    IEEE MULTIMEDIA, 2023, 30 (04) : 47 - 60
  • [50] Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach
    Harandi, Mehrtash T.
    Sanderson, Conrad
    Hartley, Richard
    Lovell, Brian C.
    COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 : 216 - 229