Discover mouse gene coexpression landscapes using dictionary learning and sparse coding

被引:6
|
作者
Li, Yujie [1 ,2 ]
Chen, Hanbo [1 ,2 ]
Jiang, Xi [1 ,2 ]
Li, Xiang [1 ,2 ]
Lv, Jinglei [1 ,2 ,3 ]
Peng, Hanchuan [4 ]
Tsien, Joe Z. [5 ]
Liu, Tianming [1 ,2 ]
机构
[1] Univ Georgia, Dept Comp Sci, Cort Architecture Imaging & Discovery Lab, Athens, GA 30602 USA
[2] Univ Georgia, Bioimaging Res Ctr, Athens, GA 30602 USA
[3] Northwestern Polytech Univ, Sch Automat, Xian, Shaanxi, Peoples R China
[4] Allen Inst Brain Sci, Seattle, WA 98109 USA
[5] Augusta Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA 30912 USA
来源
BRAIN STRUCTURE & FUNCTION | 2017年 / 222卷 / 09期
关键词
Gene coexpression network; Sparse coding; Transcriptome; HUMAN BRAIN; EXPRESSION PATTERNS; TRANSCRIPTOME; ARCHITECTURE; NETWORK; CORTEX; DIFFERENTIATION; HIPPOCAMPUS; ENRICHMENT; EVOLUTION;
D O I
10.1007/s00429-017-1460-9
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Gene coexpression patterns carry rich information regarding enormously complex brain structures and functions. Characterization of these patterns in an unbiased, integrated, and anatomically comprehensive manner will illuminate the higher-order transcriptome organization and offer genetic foundations of functional circuitry. Here using dictionary learning and sparse coding, we derived coexpression networks from the space-resolved anatomical comprehensive in situ hybridization data from Allen Mouse Brain Atlas dataset. The key idea is that if two genes use the same dictionary to represent their original signals, then their gene expressions must share similar patterns, thereby considering them as "coexpressed." For each network, we have simultaneous knowledge of spatial distributions, the genes in the network and the extent a particular gene conforms to the coexpression pattern. Gene ontologies and the comparisons with published gene lists reveal biologically identified coexpression networks, some of which correspond to major cell types, biological pathways, and/or anatomical regions.
引用
收藏
页码:4253 / 4270
页数:18
相关论文
共 50 条
  • [21] A Convergent Incoherent Dictionary Learning Algorithm for Sparse Coding
    Bao, Chenglong
    Quan, Yuhui
    Ji, Hui
    COMPUTER VISION - ECCV 2014, PT VI, 2014, 8694 : 302 - 316
  • [22] Sparse Coding and Dictionary Learning with Linear Dynamical Systems
    Huang, Wenbing
    Sun, Fuchun
    Cao, Lele
    Zhao, Deli
    Liu, Huaping
    Harandi, Mehrtash
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3938 - 3947
  • [23] LEARNING AN ADAPTIVE DICTIONARY STRUCTURE FOR EFFICIENT IMAGE SPARSE CODING
    Mazaheri, Jeremy Aghaei
    Guillemot, Christine
    labit, ClauDe
    2013 PICTURE CODING SYMPOSIUM (PCS), 2013, : 1 - 4
  • [24] LDA BASED COMPACT AND DISCRIMINATIVE DICTIONARY LEARNING FOR SPARSE CODING
    Chen, Jiayong
    Xu, Xiangmin
    Qing, Chunmei
    Jin, Jianxiu
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4912 - 4916
  • [25] Dictionary Learning for Image Coding Based on Multisample Sparse Representation
    Sun, Yipeng
    Tao, Xiaoming
    Li, Yang
    Lu, Jianhua
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (11) : 2004 - 2010
  • [26] Dictionary learning for L1-exact sparse coding
    Plumbley, Mark D.
    Independent Component Analysis and Signal Separation, Proceedings, 2007, 4666 : 406 - 413
  • [27] Retinal Vessel Enhancement Via Sparse Coding and Dictionary Learning
    Gu, Bangzhong
    Chen, Bin
    Luo, Limin
    PROCEEDINGS OF THE FIFTEENTH IAPR INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS - MVA2017, 2017, : 270 - 273
  • [28] Learning a Discriminative Dictionary for Locality Constrained Coding and Sparse Representation
    Jin Bin
    Zhang Jing
    Yang Zhiyong
    2014 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT, 2014,
  • [29] Riemannian Dictionary Learning and Sparse Coding for Positive Definite Matrices
    Cherian, Anoop
    Sra, Suvrit
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (12) : 2859 - 2871
  • [30] A DICTIONARY LEARNING ALGORITHM FOR SPARSE CODING BY THE NORMALIZED BILATERAL PROJECTIONS
    Tezuka, Taro
    2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,