Discover mouse gene coexpression landscapes using dictionary learning and sparse coding

被引:6
|
作者
Li, Yujie [1 ,2 ]
Chen, Hanbo [1 ,2 ]
Jiang, Xi [1 ,2 ]
Li, Xiang [1 ,2 ]
Lv, Jinglei [1 ,2 ,3 ]
Peng, Hanchuan [4 ]
Tsien, Joe Z. [5 ]
Liu, Tianming [1 ,2 ]
机构
[1] Univ Georgia, Dept Comp Sci, Cort Architecture Imaging & Discovery Lab, Athens, GA 30602 USA
[2] Univ Georgia, Bioimaging Res Ctr, Athens, GA 30602 USA
[3] Northwestern Polytech Univ, Sch Automat, Xian, Shaanxi, Peoples R China
[4] Allen Inst Brain Sci, Seattle, WA 98109 USA
[5] Augusta Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA 30912 USA
来源
BRAIN STRUCTURE & FUNCTION | 2017年 / 222卷 / 09期
关键词
Gene coexpression network; Sparse coding; Transcriptome; HUMAN BRAIN; EXPRESSION PATTERNS; TRANSCRIPTOME; ARCHITECTURE; NETWORK; CORTEX; DIFFERENTIATION; HIPPOCAMPUS; ENRICHMENT; EVOLUTION;
D O I
10.1007/s00429-017-1460-9
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Gene coexpression patterns carry rich information regarding enormously complex brain structures and functions. Characterization of these patterns in an unbiased, integrated, and anatomically comprehensive manner will illuminate the higher-order transcriptome organization and offer genetic foundations of functional circuitry. Here using dictionary learning and sparse coding, we derived coexpression networks from the space-resolved anatomical comprehensive in situ hybridization data from Allen Mouse Brain Atlas dataset. The key idea is that if two genes use the same dictionary to represent their original signals, then their gene expressions must share similar patterns, thereby considering them as "coexpressed." For each network, we have simultaneous knowledge of spatial distributions, the genes in the network and the extent a particular gene conforms to the coexpression pattern. Gene ontologies and the comparisons with published gene lists reveal biologically identified coexpression networks, some of which correspond to major cell types, biological pathways, and/or anatomical regions.
引用
收藏
页码:4253 / 4270
页数:18
相关论文
共 50 条
  • [1] Discover mouse gene coexpression landscapes using dictionary learning and sparse coding
    Yujie Li
    Hanbo Chen
    Xi Jiang
    Xiang Li
    Jinglei Lv
    Hanchuan Peng
    Joe Z. Tsien
    Tianming Liu
    Brain Structure and Function, 2017, 222 : 4253 - 4270
  • [2] Submodular Dictionary Learning for Sparse Coding
    Jiang, Zhuolin
    Zhang, Guangxiao
    Davis, Larry S.
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 3418 - 3425
  • [3] BRAIN TUMOR CLASSIFICATION USING SPARSE CODING AND DICTIONARY LEARNING
    Al-Shaikhli, Saif Dawood Salman
    Yang, Michael Ying
    Rosenhahn, Bodo
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2774 - 2778
  • [4] DICTIONARY LEARNING AND SPARSE CODING FOR UNSUPERVISED CLUSTERING
    Sprechmann, Pablo
    Sapiro, Guillermo
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2042 - 2045
  • [5] Confident Kernel Sparse Coding and Dictionary Learning
    Hosseini, K.
    Hammer, Barbara
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 1031 - 1036
  • [6] PERFORMANCE LIMITS OF DICTIONARY LEARNING FOR SPARSE CODING
    Jung, Alexander
    Eldar, Yonina C.
    Goertz, Norbert
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 765 - 769
  • [7] An MDL Framework for Sparse Coding and Dictionary Learning
    Ramirez, Ignacio
    Sapiro, Guillermo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2913 - 2927
  • [8] Multiple Sclerosis Lesion Segmentation Using Dictionary Learning and Sparse Coding
    Weiss, Nick
    Rueckert, Daniel
    Rao, Anil
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2013), PT I, 2013, 8149 : 735 - 742
  • [9] Brain tumor classification and segmentation using sparse coding and dictionary learning
    Al-Shaikhli, Saif Dawood Salman
    Yang, Michael Ying
    Rosenhahn, Bodo
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2016, 61 (04): : 413 - 429
  • [10] COVARIATE-DEPENDENT DICTIONARY LEARNING AND SPARSE CODING
    Zhou, Mingyuan
    Yang, Hongxia
    Sapiro, Guillermo
    Dunson, David
    Carin, Lawrence
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 5824 - 5827