CRITICALITY OF THE EXPONENTIAL RATE OF DECAY FOR THE LARGEST NEAREST-NEIGHBOR LINK IN RANDOM GEOMETRIC GRAPHS

被引:0
|
作者
Gupta, Bhupender [1 ]
Iyer, Srikanth K. [2 ]
机构
[1] Indian Inst Informat Technol, Dept Comp Sci & Engn, Jabalpur 482011, India
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
Random geometric graph; nearest-neighbor graph; Poisson point process; largest nearest-neighbor link; vertex degree; POINTS; EXTREMES;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let n points be placed independently in d-dimensional space according to the density f(x) = A(d)e(-lambda parallel to x parallel to alpha), lambda, alpha > 0, x is an element of R(d), d >= 2. Let d(n) be the longest edge length of the nearest-neighbor graph on these points. We show that (lambda(-1) log n)(1-1/alpha) d(n) - b(n) converges weakly to the Gumbel distribution, where b(n) similar to ((d - 1)/lambda alpha) log log n. We also prove the following strong law for the normalized nearest-neighbor distance (d) over tilde (n) = (lambda(-1) log n)(1-1/alpha) d(n)/log log n: (d - 1)/alpha lambda <= lim inf(n ->infinity) (d) over tilde (n) <= lim sup(n ->infinity) (d) over tilde (n) <= d/alpha lambda almost surely. Thus, the exponential rate of decay alpha = 1 is critical, in the sense that, for alpha > 1, d(n) -> 0, whereas, for alpha <= 1, d(n) -> infinity almost surely as n -> infinity.
引用
收藏
页码:631 / 658
页数:28
相关论文
共 50 条