CRITICALITY OF THE EXPONENTIAL RATE OF DECAY FOR THE LARGEST NEAREST-NEIGHBOR LINK IN RANDOM GEOMETRIC GRAPHS

被引:0
|
作者
Gupta, Bhupender [1 ]
Iyer, Srikanth K. [2 ]
机构
[1] Indian Inst Informat Technol, Dept Comp Sci & Engn, Jabalpur 482011, India
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
Random geometric graph; nearest-neighbor graph; Poisson point process; largest nearest-neighbor link; vertex degree; POINTS; EXTREMES;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let n points be placed independently in d-dimensional space according to the density f(x) = A(d)e(-lambda parallel to x parallel to alpha), lambda, alpha > 0, x is an element of R(d), d >= 2. Let d(n) be the longest edge length of the nearest-neighbor graph on these points. We show that (lambda(-1) log n)(1-1/alpha) d(n) - b(n) converges weakly to the Gumbel distribution, where b(n) similar to ((d - 1)/lambda alpha) log log n. We also prove the following strong law for the normalized nearest-neighbor distance (d) over tilde (n) = (lambda(-1) log n)(1-1/alpha) d(n)/log log n: (d - 1)/alpha lambda <= lim inf(n ->infinity) (d) over tilde (n) <= lim sup(n ->infinity) (d) over tilde (n) <= d/alpha lambda almost surely. Thus, the exponential rate of decay alpha = 1 is critical, in the sense that, for alpha > 1, d(n) -> 0, whereas, for alpha <= 1, d(n) -> infinity almost surely as n -> infinity.
引用
收藏
页码:631 / 658
页数:28
相关论文
共 50 条
  • [21] Improving the performance of M-tree family by nearest-neighbor graphs
    Skopal, Tomas
    Hoksza, David
    ADVANCES IN DATABASES AND INFORMATION SYSTEMS, PROCEEDINGS, 2007, 4690 : 172 - +
  • [22] Random nearest neighbor graphs: The translation invariant case
    Bock, Bounghun
    Damron, Michael
    Hanson, Jack
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (02): : 849 - 866
  • [23] NEAREST-NEIGHBOR SPACING DISTRIBUTION FOR AN ENSEMBLE OF RANDOM MATRICES WITH A NONRANDOM BIAS
    MCDONALD, JF
    FAVRO, LD
    JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (07) : 1114 - &
  • [24] A nearest-neighbor approach to estimating divergence between continuous random vectors
    Wang, Qing
    Kulkarni, Sanjeev R.
    Verdu, Sergio
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 242 - +
  • [25] Outperforming the Gibbs sampler empirical estimator for nearest-neighbor random fields
    Greenwood, PE
    McKeague, IW
    Wefelmeyer, W
    ANNALS OF STATISTICS, 1996, 24 (04): : 1433 - 1456
  • [26] ON A CLASS OF 2-DIMENSIONAL NEAREST-NEIGHBOR RANDOM-WALKS
    COHEN, JW
    JOURNAL OF APPLIED PROBABILITY, 1994, 31A : 207 - 237
  • [28] OBSERVATION AND EXPLANATION OF AN UNUSUAL FEATURE OF RANDOM ARRAYS WITH A NEAREST-NEIGHBOR CONSTRAINT
    FANTE, RL
    ROBERTSHAW, GA
    ZAMOSCIANYK, S
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1991, 39 (07) : 1047 - 1049
  • [29] Detection of Gauss-Markov Random Fields With Nearest-Neighbor Dependency
    Anandkumar, Animashree
    Tong, Lang
    Swami, Ananthram
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (02) : 816 - 827
  • [30] A nearest-neighbor divide-and-conquer approach for adaptive random testing
    Huang, Rubing
    Sun, Weifeng
    Chen, Haibo
    Cui, Chenhui
    Yang, Ning
    SCIENCE OF COMPUTER PROGRAMMING, 2022, 215