A Multiscale Approach to Optimal Transport

被引:173
|
作者
Merigot, Quentin [1 ,2 ]
机构
[1] Univ Grenoble, Lab Jean Kuntzmann, Grenoble, France
[2] CNRS, F-75700 Paris, France
关键词
D O I
10.1111/j.1467-8659.2011.02032.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose an improvement of an algorithm of Aurenhammer, Hoffmann and Aronov to find a least square matching between a probability density and finite set of sites with mass constraints, in the Euclidean plane. Our algorithm exploits the multiscale nature of this optimal transport problem. We iteratively simplify the target using Lloyd's algorithm, and use the solution of the simplified problem as a rough initial solution to the more complex one. This approach allows for fast estimation of distances between measures related to optimal transport (known as Earth-mover or Wasserstein distances). We also discuss the implementation of these algorithms, and compare the original one to its multiscale counterpart.
引用
收藏
页码:1583 / 1592
页数:10
相关论文
共 50 条
  • [41] Multiscale Kinetic Transport
    Hadjiconstantinou, Nicolas G.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [42] Computational approach to optimal transport network construction in biomechanics
    Kizilova, N
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 2, 2004, 3044 : 476 - 485
  • [43] Matrix Optimal Mass Transport: A Quantum Mechanical Approach
    Chen, Yongxin
    Georgiou, Tryphon T.
    Tannenbaum, Allen
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (08) : 2612 - 2619
  • [44] A unifying approach to distributional limits for empirical optimal transport
    Hundrieser, Shayan
    Klatt, Marcel
    Munk, Axel
    Staudt, Thomas
    BERNOULLI, 2024, 30 (04) : 2846 - 2877
  • [45] A geometric approach to apriori estimates for optimal transport maps
    Brendle, Simon
    Leger, Flavien
    McCann, Robert J.
    Rankin, Cale
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (817): : 251 - 266
  • [46] An optimal transport approach to linearized inversion of receiver functions
    Hedjazian, N.
    Bodin, T.
    Metivier, L.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 216 (01) : 130 - 147
  • [47] A volumetric approach to Monge's optimal transport on surfaces
    Tsai, Richard
    Turnquist, Axel G. R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 517
  • [48] MULTIVIEW SENSING WITH UNKNOWN PERMUTATIONS: AN OPTIMAL TRANSPORT APPROACH
    Ma, Yanting
    Boufounos, Petros T.
    Mansour, Hassan
    Aeron, Shuchin
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1440 - 1444
  • [49] AN ENTROPIC OPTIMAL TRANSPORT NUMERICAL APPROACH TO THE REFLECTOR PROBLEM
    Benamou, Jean-David
    Ijzerman, Wilbert L.
    Rukhaia, Giorgi
    METHODS AND APPLICATIONS OF ANALYSIS, 2020, 27 (04) : 311 - 340
  • [50] Multiscale Modeling Approach to determine Effective Lithium-Ion Transport Properties
    Arunachalam, Harikesh
    Korneev, Svyatoslav
    Battiato, Ilenia
    Onori, Simona
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 92 - 97