On Fienup Methods for Sparse Phase Retrieval

被引:36
|
作者
Pauwels, Edouard Jean Robert [1 ]
Beck, Amir [2 ]
Eldar, Yonina C. [3 ]
Sabach, Shoham [4 ]
机构
[1] Univ Toulouse III Paul Sabatier, IRIT, Informat Dept, F-31062 Toulouse, France
[2] Tel Aviv Univ, Sch Math Sci, IL-6997801 Tel Aviv, Israel
[3] Technion Israel Inst Technol, Dept Elect Engn, IL-3200003 Haifa, Israel
[4] Technion Israel Inst Technol, Dept Ind Engn, IL-3200003 Haifa, Israel
基金
以色列科学基金会;
关键词
Non-convex optimization; iterative algorithms; phase retrieval; sparse signal processing; Fourier measurements; CONVERGENCE; ALGORITHM; MINIMIZATION; NONCONVEX;
D O I
10.1109/TSP.2017.2780044
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Alternating minimization, or Fienup methods, have a long history in phase retrieval. We provide new insights related to the empirical and theoretical analysis of these algorithms when used with Fourier measurements and combined with convex priors. In particular, we show that Fienup methods can be viewed as performing alternating minimization on a regularized nonconvex least-squares problem with respect to amplitude measurements. Furthermore, we prove that under mild additional structural assumptions on the prior (semialgebraicity), the sequence of signal estimates has a smooth convergent behavior toward a critical point of the nonconvex regularized least-squares objective. Finally, we propose an extension to Fienup techniques, based on a projected gradient descent interpretation and acceleration using inertial terms. We demonstrate experimentally that this modification combined with an l(1) prior constitutes a competitive approach for sparse phase retrieval.
引用
收藏
页码:982 / 991
页数:10
相关论文
共 50 条
  • [1] Phase Retrieval with Sparse Phase Constraint
    Nguyen Hieu Thao
    Luke, David Russell
    Soloviev, Oleg
    Verhaegen, Michel
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (01): : 246 - 263
  • [2] Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization
    Bauschke, HH
    Combettes, PL
    Luke, DR
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (07): : 1334 - 1345
  • [3] Phase retrieval for sparse signals
    Wang, Yang
    Xu, Zhiqiang
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 37 (03) : 531 - 544
  • [4] From Fienup's phase retrieval techniques to regularized inversion for in-line holography: tutorial
    Momey, Fabien
    Denis, Loic
    Olivier, Thomas
    Fournier, Corinne
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (12) : D62 - D80
  • [5] On Robust Phase Retrieval for Sparse Signals
    Jaganathan, Kishore
    Oymak, Samet
    Hassibi, Babak
    2012 50TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2012, : 794 - 799
  • [6] Sparse Phase Retrieval Via PhaseLiftOff
    Xia, Yu
    Xu, Zhiqiang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 2129 - 2143
  • [7] ON CONDITIONS FOR UNIQUENESS IN SPARSE PHASE RETRIEVAL
    Ohlsson, Henrik
    Eldar, Yonina C.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [8] Extended OMP algorithm for sparse phase retrieval
    Wang, Qian
    Qu, Gangrong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (08) : 1397 - 1403
  • [9] Hadamard Wirtinger Flow for Sparse Phase Retrieval
    Wu, Fan
    Rebeschini, Patrick
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [10] Robust sparse phase retrieval made easy
    Iwen, Mark
    Viswanathan, Aditya
    Wang, Yang
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, 42 (01) : 135 - 142