Extended OMP algorithm for sparse phase retrieval

被引:8
|
作者
Wang, Qian [1 ]
Qu, Gangrong [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Sch Sci, Beijing, Peoples R China
[2] Beijing Ctr Math & Informat Interdisciplinary Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase retrieval; Sparse signal; Signal processing; Orthogonal matching pursuit; Coherence; SIGNAL RECOVERY; CRYSTALLOGRAPHY; BISPECTRUM;
D O I
10.1007/s11760-017-1099-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the problem of phase retrieval, namely recovering a signal from the magnitude of its linear measurements. Due to the loss of phase information, additional structure information about the signal is necessary. In this work, we focus our attention on sparse signals, i.e., signals consist of a small number of nonzero elements in an appropriate basis. The main contribution of this paper is that a novel algorithm for sparse phase retrieval and its modified version which has high recovery rate are proposed. Moreover, the quartic coherence of measurement matrix is first put forward to analyze recovery condition. The numerical results show that the proposed algorithm is accurate than existing techniques.
引用
收藏
页码:1397 / 1403
页数:7
相关论文
共 50 条
  • [1] Extended OMP algorithm for sparse phase retrieval
    Qian Wang
    Gangrong Qu
    Signal, Image and Video Processing, 2017, 11 : 1397 - 1403
  • [2] Phase retrieval for sparse binary signal: uniqueness and algorithm
    Yuan, Ziyang
    Wang, Hongxia
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2018, 26 (05) : 641 - 656
  • [3] A Robust Sparse Wirtinger Flow Algorithm with Optimal Stepsize for Sparse Phase Retrieval
    Ben Lazreg, Meriem
    Amara, Rim
    2018 15TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS AND DEVICES (SSD), 2018, : 34 - 39
  • [4] Amplitude-Based Smoothed Sparse Phase Retrieval Algorithm
    Xiao, Zhuolei
    Liu, Zhengyan
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [5] Stopping Criteria Analysis of the OMP Algorithm for Sparse Channels Estimation
    Dziwoki, Grzegorz
    Izydorczyk, Jacek
    COMPUTER NETWORKS, CN 2015, 2015, 522 : 250 - 259
  • [6] FASPR: A fast sparse phase retrieval algorithm via the epigraph concept
    Shi, Baoshun
    Chen, Shuzhen
    Tian, Ye
    Fan, Xiaoyu
    Lian, Qiusheng
    DIGITAL SIGNAL PROCESSING, 2018, 80 : 12 - 26
  • [7] Reconstruction of Sparse Propagation Environment With Complexity Reduced OMP Algorithm
    Dziwoki, Grzegorz
    Kucharczyk, Marcin
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (06) : 1559 - 1562
  • [8] Phase Retrieval with Sparse Phase Constraint
    Nguyen Hieu Thao
    Luke, David Russell
    Soloviev, Oleg
    Verhaegen, Michel
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (01): : 246 - 263
  • [9] GARLM: Greedy Autocorrelation Retrieval Levenberg-Marquardt Algorithm for Improving Sparse Phase Retrieval
    Xiao, Zhuolei
    Zhang, Yerong
    Zhang, Kaixuan
    Zhao, Dongxu
    Gui, Guan
    APPLIED SCIENCES-BASEL, 2018, 8 (10):
  • [10] Phase retrieval for sparse signals
    Wang, Yang
    Xu, Zhiqiang
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 37 (03) : 531 - 544