On Fienup Methods for Sparse Phase Retrieval

被引:36
|
作者
Pauwels, Edouard Jean Robert [1 ]
Beck, Amir [2 ]
Eldar, Yonina C. [3 ]
Sabach, Shoham [4 ]
机构
[1] Univ Toulouse III Paul Sabatier, IRIT, Informat Dept, F-31062 Toulouse, France
[2] Tel Aviv Univ, Sch Math Sci, IL-6997801 Tel Aviv, Israel
[3] Technion Israel Inst Technol, Dept Elect Engn, IL-3200003 Haifa, Israel
[4] Technion Israel Inst Technol, Dept Ind Engn, IL-3200003 Haifa, Israel
基金
以色列科学基金会;
关键词
Non-convex optimization; iterative algorithms; phase retrieval; sparse signal processing; Fourier measurements; CONVERGENCE; ALGORITHM; MINIMIZATION; NONCONVEX;
D O I
10.1109/TSP.2017.2780044
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Alternating minimization, or Fienup methods, have a long history in phase retrieval. We provide new insights related to the empirical and theoretical analysis of these algorithms when used with Fourier measurements and combined with convex priors. In particular, we show that Fienup methods can be viewed as performing alternating minimization on a regularized nonconvex least-squares problem with respect to amplitude measurements. Furthermore, we prove that under mild additional structural assumptions on the prior (semialgebraicity), the sequence of signal estimates has a smooth convergent behavior toward a critical point of the nonconvex regularized least-squares objective. Finally, we propose an extension to Fienup techniques, based on a projected gradient descent interpretation and acceleration using inertial terms. We demonstrate experimentally that this modification combined with an l(1) prior constitutes a competitive approach for sparse phase retrieval.
引用
收藏
页码:982 / 991
页数:10
相关论文
共 50 条
  • [41] Sparse Phase Retrieval via Iteratively Reweighted Amplitude Flow
    Wang, Gang
    Zhang, Liang
    Giannakis, Georgios B.
    Chen, Jie
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 712 - 716
  • [42] COMPRESSIVE PHASE RETRIEVAL BASED ON SPARSE LATENT GENERATIVE PRIORS
    Killedar, Vinayak
    Seelamantula, Chandra Sekhar
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1596 - 1600
  • [43] Amplitude-Based Smoothed Sparse Phase Retrieval Algorithm
    Xiao, Zhuolei
    Liu, Zhengyan
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [44] Sparse Phase Retrieval Using Partial Nested Fourier Samplers
    Qiao, Heng
    Pal, Piya
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 522 - 526
  • [45] Undersampled Sparse Phase Retrieval via Majorization-Minimization
    Qiu, Tianyu
    Palomar, Daniel P.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (22) : 5957 - 5969
  • [46] Interferometric Phase Retrieval for Multimode InSAR via Sparse Recovery
    Yang, Huizhang
    Chen, Chengzhi
    Chen, Shengyao
    Xi, Feng
    Liu, Zhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 333 - 347
  • [47] SPARTA: SPARSE PHASE RETRIEVAL VIA TRUNCATED AMPLITUDE FLOW
    Wang, Gang
    Giannakis, Georgios B.
    Chen, Jie
    Akcakaya, Mehmet
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3974 - 3978
  • [48] On the Information-Theoretic Limits of Noisy Sparse Phase Retrieval
    Lan V Truong
    Scarlett, Jonathan
    2019 IEEE INFORMATION THEORY WORKSHOP (ITW), 2019, : 329 - 333
  • [49] GARLM: Greedy Autocorrelation Retrieval Levenberg-Marquardt Algorithm for Improving Sparse Phase Retrieval
    Xiao, Zhuolei
    Zhang, Yerong
    Zhang, Kaixuan
    Zhao, Dongxu
    Gui, Guan
    APPLIED SCIENCES-BASEL, 2018, 8 (10):
  • [50] Sparse superresolution phase retrieval from phase-coded noisy intensity patterns
    Katkovnik, Vladimir
    Egiazarian, Karen
    OPTICAL ENGINEERING, 2017, 56 (09)