Weak Solutions for Nonlinear Neumann Boundary Value Problems with p(x)-Laplacian Operators

被引:3
|
作者
Kong, Lingju [1 ]
机构
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2017年 / 21卷 / 06期
关键词
nonlinear boundary conditions; weak solutions; concentration-compactness principle; variable exponent spaces; critical growth; mountain pass lemma; dual fountain theorem; SPACES; MULTIPLICITY; EIGENVALUES; EXISTENCE;
D O I
10.11650/tjm/7995
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the nonlinear Neumann boundary value problem with a p(x)Laplacian operator {Delta(p(x))u + a(x) vertical bar u vertical bar(p(x)-2)u - f(x, u) in Omega, vertical bar del u vertical bar(p(x)-2)partial derivative u/partial derivative v - vertical bar u vertical bar(q(x)-2)u + lambda vertical bar u vertical bar(w(x)-2)u on partial derivative Omega, where Omega subset of R-N, with N >= 2, is a bounded domain with smooth boundary and q (x) is critical in the context of variable exponent p(*)(x) = (N - 1) p(x) / (N - p (x)). Using the variational method and a version of the concentration-compactness principle for the Sobolev trace immersion with variable exponents, we establish the existence and multiplicity of weak solutions for the above problem.
引用
收藏
页码:1355 / 1379
页数:25
相关论文
共 50 条