Weak Solutions for Nonlinear Neumann Boundary Value Problems with p(x)-Laplacian Operators

被引:3
|
作者
Kong, Lingju [1 ]
机构
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2017年 / 21卷 / 06期
关键词
nonlinear boundary conditions; weak solutions; concentration-compactness principle; variable exponent spaces; critical growth; mountain pass lemma; dual fountain theorem; SPACES; MULTIPLICITY; EIGENVALUES; EXISTENCE;
D O I
10.11650/tjm/7995
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the nonlinear Neumann boundary value problem with a p(x)Laplacian operator {Delta(p(x))u + a(x) vertical bar u vertical bar(p(x)-2)u - f(x, u) in Omega, vertical bar del u vertical bar(p(x)-2)partial derivative u/partial derivative v - vertical bar u vertical bar(q(x)-2)u + lambda vertical bar u vertical bar(w(x)-2)u on partial derivative Omega, where Omega subset of R-N, with N >= 2, is a bounded domain with smooth boundary and q (x) is critical in the context of variable exponent p(*)(x) = (N - 1) p(x) / (N - p (x)). Using the variational method and a version of the concentration-compactness principle for the Sobolev trace immersion with variable exponents, we establish the existence and multiplicity of weak solutions for the above problem.
引用
收藏
页码:1355 / 1379
页数:25
相关论文
共 50 条
  • [21] Existence and multiplicity of solutions for nonlocal p(x)-Laplacian equations with nonlinear Neumann boundary conditions
    Erlin Guo
    Peihao Zhao
    Boundary Value Problems, 2012 (1)
  • [22] Three Weak Solutions for a Class of Neumann Boundary Value Systems Involving the (p1, ..., pn)-Laplacian
    Hadjian, Armin
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (05): : 175 - 185
  • [23] Existence of Positive Solutions for the Nonlinear Fractional Boundary Value Problems with p-Laplacian
    Chakuvinga, Tawanda Gallan
    Topal, Fatma Serap
    FILOMAT, 2021, 35 (09) : 2927 - 2949
  • [24] The existence of solutions for integral boundary value problems with P-laplacian operators on infinite interval
    Fenizri F.
    Khaldi R.
    Guezane-Lakoud A.
    Journal of Nonlinear Functional Analysis, 2021, 2021 (01):
  • [25] THE EXISTENCE OF SOLUTIONS FOR INTEGRAL BOUNDARY VALUE PROBLEMS WITH P-LAPLACIAN OPERATORS ON INFINITE INTERVAL
    Fenizri, F.
    Khaldi, R.
    Guezane-Lakoud, A.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
  • [26] On the solvability of discrete nonlinear Neumann problems involving the p(x)-Laplacian
    Aboudramane Guiro
    Ismael Nyanquini
    Stanislas Ouaro
    Advances in Difference Equations, 2011
  • [27] On the solvability of discrete nonlinear Neumann problems involving the p(x)-Laplacian
    Guiro, Aboudramane
    Nyanquini, Ismael
    Ouaro, Stanislas
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [28] Solutions for Steklov boundary value problems involving p(x)-Laplace operators
    Allaoui, Mostafa
    El Amrouss, Abdel Rachid
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (01): : 163 - 173
  • [29] THREE SOLUTIONS FOR A NEUMANN BOUNDARY VALUE PROBLEM INVOLVING THE p-LAPLACIAN
    Averna, Diego
    Bonanno, Gabriele
    MATEMATICHE, 2005, 60 (01): : 81 - 91
  • [30] POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN
    Kong, Qingkai
    Wang, Min
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,