LEARNING TO PREDICT PHYSICAL PROPERTIES USING SUMS OF SEPARABLE FUNCTIONS

被引:7
|
作者
d'Avezac, Mayeul [1 ]
Botts, Ryan [2 ]
Mohlenkamp, Martin J. [2 ]
Zunger, Alex [3 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] 1 Ohio Univ, Dept Math, Athens, OH 45701 USA
[3] Univ Colorado, Boulder, CO 80309 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 06期
基金
美国国家科学基金会;
关键词
separated representation; multivariate regression; optimized materials;
D O I
10.1137/100805959
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm for learning the function that maps a material structure to its value on some property, given the value of this function on several structures. We pose this problem as one of learning (regressing) a function of many variables from scattered data. Each structure is first converted to a weighted set of points by a process that removes irrelevant translations and rotations but otherwise retains full information about the structure. Then, incorporating a weighted average for each structure, we construct the multivariate regression function as a sum of separable functions, following the paradigm of separated representations. The algorithm can treat all finite and periodic structures within a common framework, and in particular does not require all structures to lie on a common lattice. We show how the algorithm simplifies when the structures do lie on a common lattice, and we present numerical results for that case.
引用
收藏
页码:3381 / 3401
页数:21
相关论文
共 50 条
  • [41] Approximation Properties of Dicrete Fourier Sums for Some Piecewise Linear Functions
    Akniyev, G. G.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2018, 18 (01): : 4 - 16
  • [42] Physical properties of biophotons and their biological functions
    Chang Jiin-Ju
    INDIAN JOURNAL OF EXPERIMENTAL BIOLOGY, 2008, 46 (05) : 371 - 377
  • [43] Empirical and Theoretical Arguments for Using Properties of Letters for the Learning of Sequential Functions
    Markowska, Magdalena
    Heinz, Jeffrey
    INTERNATIONAL CONFERENCE ON GRAMMATICAL INFERENCE, VOL 217, 2023, 217 : 270 - 274
  • [44] On PAC learning of functions with smoothness properties using feedforward sigmoidal networks
    Oak Ridge Natl Lab, Oak Ridge, United States
    Proc IEEE, 10 (1562-1568):
  • [45] On PAC learning of functions with smoothness properties using feedforward sigmoidal networks
    Rao, NSV
    Protopopescu, VA
    PROCEEDINGS OF THE IEEE, 1996, 84 (10) : 1562 - 1569
  • [46] Surface approximation of curved data using separable radial basis functions
    Crampton, A
    Mason, JC
    ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY V, 2001, 57 : 118 - 125
  • [47] A parallel implementation of automatic differentiation for partially separable functions using PVM
    Conforti, D
    DeLuca, L
    Grandinetti, L
    Musmanno, R
    PARALLEL COMPUTING, 1996, 22 (05) : 643 - 656
  • [48] Using deep learning to predict soil properties from regional spectral data
    Padarian, J.
    Minasny, B.
    McBratney, A. B.
    GEODERMA REGIONAL, 2019, 16
  • [49] DeepVentilation: Learning to Predict Physical Effort from Breathing
    Sen, Sagar
    Bernabe, Pierre
    Husom, Erik Johannes B. L. G.
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 5231 - 5233
  • [50] Cortical maps of separable tuning properties predict population responses to complex visual stimuli
    Baker, TI
    Issa, NP
    JOURNAL OF NEUROPHYSIOLOGY, 2005, 94 (01) : 775 - 787