LEARNING TO PREDICT PHYSICAL PROPERTIES USING SUMS OF SEPARABLE FUNCTIONS

被引:7
|
作者
d'Avezac, Mayeul [1 ]
Botts, Ryan [2 ]
Mohlenkamp, Martin J. [2 ]
Zunger, Alex [3 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] 1 Ohio Univ, Dept Math, Athens, OH 45701 USA
[3] Univ Colorado, Boulder, CO 80309 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 06期
基金
美国国家科学基金会;
关键词
separated representation; multivariate regression; optimized materials;
D O I
10.1137/100805959
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm for learning the function that maps a material structure to its value on some property, given the value of this function on several structures. We pose this problem as one of learning (regressing) a function of many variables from scattered data. Each structure is first converted to a weighted set of points by a process that removes irrelevant translations and rotations but otherwise retains full information about the structure. Then, incorporating a weighted average for each structure, we construct the multivariate regression function as a sum of separable functions, following the paradigm of separated representations. The algorithm can treat all finite and periodic structures within a common framework, and in particular does not require all structures to lie on a common lattice. We show how the algorithm simplifies when the structures do lie on a common lattice, and we present numerical results for that case.
引用
收藏
页码:3381 / 3401
页数:21
相关论文
共 50 条
  • [31] Model Reduction of Cooperative Systems Using Separable Energy Functions
    Sarkar, Arijit
    Kawano, Yu
    Scherpen, Jacquelien M. A.
    IFAC PAPERSONLINE, 2024, 58 (05): : 96 - 101
  • [32] Using machine learning to predict gamma shielding properties: a comparative study
    Nahool, T. A.
    Abdelmonem, A. M.
    Ali, M. S.
    Yasser, A. M.
    NEW JOURNAL OF PHYSICS, 2024, 26 (09):
  • [33] LEARNING PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS USING MOLECULAR MODELING
    Rius-Alonso, C. A.
    Gonzalez Quezada, Y.
    EDULEARN15: 7TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES, 2015, : 1331 - 1338
  • [34] Learning Physical Properties of Objects Using Gaussian Mixture Models
    Hassani, Kaveh
    Lee, Won-Sook
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CANADIAN AI 2017, 2017, 10233 : 179 - 190
  • [35] Using physical literacy to predict physical activity among university students: a machine learning logistic regression model
    Dong, Xiaoxi
    Yan, Zengying
    Deng, Jiangzhou
    Desiral, Heather Johanson
    Xu, Menglin
    Huang, Fan
    INTERNATIONAL JOURNAL OF SPORT PSYCHOLOGY, 2024, 55 (03) : 280 - 296
  • [36] Sparse approximation of functions using sums of exponentials and AAK theory
    Andersson, Fredrik
    Carlsson, Marcus
    de Hoop, Maarten V.
    JOURNAL OF APPROXIMATION THEORY, 2011, 163 (02) : 213 - 248
  • [37] Properties and functions of feedback in learning
    Bosc-Mine, Christelle
    ANNEE PSYCHOLOGIQUE, 2014, 114 (02): : 315 - 353
  • [38] PHYSICAL PROPERTIES AND THERMODYNAMIC FUNCTIONS OF TRICHLOROACETONITRILE
    DAVIES, M
    JENKIN, DG
    JOURNAL OF THE CHEMICAL SOCIETY, 1954, (JUL): : 2374 - 2377
  • [40] Properties of sums of some elementary functions and their application to computational and modeling problems
    Yu. K. Shestopaloff
    Computational Mathematics and Mathematical Physics, 2011, 51