Effect of Temperature on Performance of 5-nm Node Silicon Nanosheet Transistors for Analog Applications

被引:6
|
作者
Pundir, Yogendra Pratap [1 ,2 ]
Bisht, Arvind [1 ]
Saha, Rajesh [1 ]
Pal, Pankaj Kumar [1 ]
机构
[1] Natl Inst Technol Uttarakhand, Uttarakhand 246174, India
[2] Hemvati Nandan Bahuguna Garhwal Univ, Uttarakhand 246174, India
关键词
Analog Performance; Gain frequency product; Intrinsic gain; Nanosheet Transistor; Unit gain frequency;
D O I
10.1007/s12633-022-01800-w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work investigates the effects of temperature on the performance of a 5-nm node N-channel Nanosheet Transistor (NST) for analog applications. A fully calibrated commercial TCAD platform is used for the device as well as mixed-mode circuit simulations. The range of temperature used in the study is from 250 to 450 K. The transconductance (g(m)) of the NST shows a change in the sign of its temperature coefficient (TC), from positive to negative, around a gate voltage of 0.52 V. The Output-conductance (g(ds)) and Early-voltage (V-EA) parameters increase with the increase in temperature. However, the Intrinsic-gain (A(v)), Transconductance-generation-efficiency (g(m)/I-DS), Unit-gain-frequency (f(T)), Gain-Frequency product (GFP), Transconductance-Frequency product (TFP), and Gain- Transconductance-Frequency product (GTFP) parameters are observed to deteriorate with the increasing temperature. For the increase in temperature from 250 to 450 K: the maximum g(m) value is seen to decrease from 228 mu S to 200 mu S; the g(ds) values increase from 24.6 mu S to 27.1 mu S; the early voltage (at V-GS = 400 mV) improves from 2.37 to 2.71 V; the f(T) value decreases from 568 GHz to 524 GHz; the A(v) value falls from 9.2 to 7.4; Discharge-time (t(d)) value improves from 9.45 ns to 8.11 ns; the g(m)/I-DS values degrade from 37.5 V- 1 to 22.4 V- 1; the GFP value falls from 5.22 THz to 3.86 THz.
引用
收藏
页码:10581 / 10589
页数:9
相关论文
共 50 条
  • [11] Sensitivity of Inner Spacer Thickness Variations for Sub-3-nm Node Silicon Nanosheet Field-Effect Transistors
    Lee, Sanguk
    Jeong, Jinsu
    Yoon, Jun-Sik
    Lee, Seunghwan
    Lee, Junjong
    Lim, Jaewan
    Baek, Rock-Hyun
    NANOMATERIALS, 2022, 12 (19)
  • [12] Scaling carbon nanotube complementary transistors to 5-nm gate lengths
    Qiu, Chenguang
    Zhang, Zhiyong
    Xiao, Mengmeng
    Yang, Yingjun
    Zhong, Donglai
    Peng, Lian-Mao
    SCIENCE, 2017, 355 (6322) : 271 - +
  • [13] Air-spacers as analog-performance booster for 5 nm-node N-channel nanosheet transistor
    Pundir, Yogendra Pratap
    Bisht, Arvind
    Saha, Rajesh
    Pal, Pankaj Kumar
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2021, 36 (09)
  • [14] Benchmarking Power Delivery Network Designs at the 5-nm Technology Node
    Lanzillo, Nicholas A.
    Chu, Albert M.
    Perez, Nick
    Vega, Reinaldo
    Clevenger, Larry
    Dechene, Dan
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (12) : 7135 - 7140
  • [15] Effects of TID on SRAM Data Retention Stability at the 5-nm Node
    Pieper, Nicholas J.
    Xiong, Yoni
    Pasternak, John
    Ball, Dennis R.
    Bhuva, Bharat L.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2024, 71 (08) : 1864 - 1871
  • [16] Study of Multicell Upsets in SRAM at a 5-nm Bulk FinFET Node
    Pieper, Nicholas J. J.
    Xiong, Yoni
    Feeley, Alexandra
    Pasternak, John
    Dodds, Nathaniel
    Ball, D. R.
    Bhuva, Bharat L. L.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2023, 70 (04) : 401 - 409
  • [17] Comparative Analysis of Semiconductor Device Architectures for 5-nm Node and Beyond
    Feng, Peijie
    Song, Seung-Chul
    Nallapati, Giri
    Zhu, John
    Bao, Jerry
    Moroz, Victor
    Choi, Munkang
    Lin, Xi-Wei
    Lu, Qiang
    Colombeau, Benjamin
    Breil, Nicolas
    Chudzik, Michael
    Chidambaram, Chidi
    IEEE ELECTRON DEVICE LETTERS, 2017, 38 (12) : 1657 - 1660
  • [18] Design optimization of sub-5nm node nanosheet field effect transistors to minimize self-heating effects
    Ding, Fei
    Wong, Hiu-Yung
    Liu, Tsu-Jae King
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2021, 39 (01):
  • [19] A Comprehensive Investigation of Vertically Stacked Silicon Nanosheet Field Effect Transistors: an Analog/RF Perspective
    Shubham Tayal
    J. Ajayan
    L. M. I. Leo Joseph
    J. Tarunkumar
    D. Nirmal
    Biswajit Jena
    Ashutosh Nandi
    Silicon, 2022, 14 : 3543 - 3550
  • [20] A Comprehensive Investigation of Vertically Stacked Silicon Nanosheet Field Effect Transistors: an Analog/RF Perspective
    Tayal, Shubham
    Ajayan, J.
    Joseph, L. M. I. Leo
    Tarunkumar, J.
    Nirmal, D.
    Jena, Biswajit
    Nandi, Ashutosh
    SILICON, 2022, 14 (07) : 3543 - 3550