Convergence and rate optimality of adaptive multilevel stochastic Galerkin FEM

被引:4
|
作者
Bespalov, Alex [1 ]
Praetorius, Dirk [2 ]
Ruggeri, Michele [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会; 英国工程与自然科学研究理事会;
关键词
adaptive methods; a posteriori error analysis; two-level error estimation; multilevel stochastic Galerkin method; finite element methods; parametric PDEs; APPROXIMATION;
D O I
10.1093/imanum/drab036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze an adaptive algorithm for the numerical solution of parametric elliptic partial differential equations in two-dimensional physical domains, with coefficients and right-hand-side functions depending on infinitely many (stochastic) parameters. The algorithm generates multilevel stochastic Galerkin approximations; these are represented in terms of a sparse generalized polynomial chaos expansion with coefficients residing in finite element spaces associated with different locally refined meshes. Adaptivity is driven by a two-level a posteriori error estimator and employs a Dorfler-type marking on the joint set of spatial and parametric error indicators. We show that, under an appropriate saturation assumption, the proposed adaptive strategy yields optimal convergence rates with respect to the overall dimension of the underlying multilevel approximation spaces.
引用
收藏
页码:2190 / 2213
页数:24
相关论文
共 50 条
  • [21] Convergence and optimality of BS-type discrete hedging strategy under stochastic interest rate
    He JiFeng
    Wu Lan
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (07) : 1457 - 1478
  • [22] ADAPTIVE ALGORITHM FOR STOCHASTIC GALERKIN METHOD
    Pultarova, Ivana
    APPLICATIONS OF MATHEMATICS, 2015, 60 (05) : 551 - 571
  • [23] Convergence and optimality of BS-type discrete hedging strategy under stochastic interest rate
    JiFeng He
    Lan Wu
    Science China Mathematics, 2011, 54 : 1457 - 1478
  • [24] Adaptive algorithm for stochastic Galerkin method
    Ivana Pultarová
    Applications of Mathematics, 2015, 60 : 551 - 571
  • [25] ADAPTIVE ESTIMATION ALGORITHMS (CONVERGENCE, OPTIMALITY, STABILITY)
    POLYAK, BT
    TSYPKIN, YZ
    AUTOMATION AND REMOTE CONTROL, 1979, 40 (03) : 378 - 389
  • [26] Convergence and optimality of BS-type discrete hedging strategy under stochastic interest rate
    HE JiFeng & WU Lan Department of Mathematics
    Science China(Mathematics), 2011, 54 (07) : 1457 - 1478
  • [27] Adaptive VEM for variable data: convergence and optimality
    da Veiga, L. Beirao
    Canuto, C.
    Nochetto, R. H.
    Vacca, G.
    Verani, M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 44 (05) : 2553 - 2602
  • [28] Convergence and optimality of the adaptive Morley element method
    Hu, Jun
    Shi, Zhongci
    Xu, Jinchao
    NUMERISCHE MATHEMATIK, 2012, 121 (04) : 731 - 752
  • [29] Convergence and optimality of the adaptive Morley element method
    Jun Hu
    Zhongci Shi
    Jinchao Xu
    Numerische Mathematik, 2012, 121 : 731 - 752
  • [30] Convergence Rate for Galerkin Approximation of the Stochastic Allen—Cahn Equations on 2D Torus
    Ting Ma
    Rong Chan Zhu
    Acta Mathematica Sinica, English Series, 2021, 37 : 471 - 490