ADAPTIVE ALGORITHM FOR STOCHASTIC GALERKIN METHOD

被引:8
|
作者
Pultarova, Ivana [1 ,2 ]
机构
[1] Czech Tech Univ, Dept Math, Fac Civil Engn, Prague 16629 6, Czech Republic
[2] Coll Polytech Jihlava, Dept Math, Jihlava 58601, Czech Republic
关键词
stochastic Galerkin method; a posteriori error estimate; strengthened Cauchy-Bunyakowski-Schwarz constant; adaptive refinement; PARTIAL-DIFFERENTIAL-EQUATIONS; ERROR ANALYSIS; APPROXIMATIONS;
D O I
10.1007/s10492-015-0111-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new tool for obtaining efficient a posteriori estimates of errors of approximate solutions of differential equations the data of which depend linearly on random parameters. The solution method is the stochastic Galerkin method. Polynomial chaos expansion of the solution is considered and the approximation spaces are tensor products of univariate polynomials in random variables and of finite element basis functions. We derive a uniform upper bound to the strengthened Cauchy-Bunyakowski-Schwarz constant for a certain hierarchical decomposition of these spaces. Based on this, an adaptive algorithm is proposed. A simple numerical example illustrates the efficiency of the algorithm. Only the uniform distribution of random variables is considered in this paper, but the results obtained can be modified to any other type of random variables.
引用
收藏
页码:551 / 571
页数:21
相关论文
共 50 条
  • [1] Adaptive algorithm for stochastic Galerkin method
    Ivana Pultarová
    Applications of Mathematics, 2015, 60 : 551 - 571
  • [2] AN ADAPTIVE STOCHASTIC GALERKIN METHOD FOR RANDOM ELLIPTIC OPERATORS
    Gittelson, Claude Jeffrey
    MATHEMATICS OF COMPUTATION, 2013, 82 (283) : 1515 - 1541
  • [3] Adaptive stochastic Galerkin FEM
    Eigel, Martin
    Gittelson, Claude Jeffrey
    Schwab, Christoph
    Zander, Elmar
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 270 : 247 - 269
  • [4] CONVERGENCE OF ADAPTIVE STOCHASTIC GALERKIN FEM
    Bespalov, Alex
    Praetorius, Dirk
    Rocchi, Leonardo
    Ruggeri, Michele
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (05) : 2359 - 2382
  • [5] A Stochastic Galerkin Method for Stochastic Control Problems
    Lee, Hyung-Chun
    Lee, Jangwoon
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (01) : 77 - 106
  • [6] ADAPTIVE METHOD FOR GALERKIN PROJECTIONS
    GUSMANN, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1980, 60 (7BIS): : T292 - T293
  • [7] Adaptive Galerkin particle method
    Lu, HS
    Chen, JS
    MESHFREE METHODS FOR PARTIAL EQUATIONS, 2003, 26 : 251 - 265
  • [8] An adaptive spectral Galerkin stochastic finite element method using variability response functions
    Giovanis, Dimitris G.
    Papadopoulos, Vissarion
    Stavroulakis, George
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 104 (03) : 185 - 208
  • [9] A stochastic Galerkin method with adaptive time-stepping for the Navier-Stokes equations
    Sousedik, Bedrich
    Price, Randy
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 468
  • [10] An adaptive stochastic Galerkin method based on multilevel expansions of random fields: Convergence and optimality
    Bachmayr, Markus
    Voulis, Igor
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (06) : 1955 - 1992