HEMT statistical modeling using Monte Carlo method combined with principal components analysis

被引:0
|
作者
Ciminelli, C [1 ]
D'Orazio, A [1 ]
De Sario, M [1 ]
Petruzzelli, V [1 ]
Prudenzano, F [1 ]
机构
[1] Politech Bari, Dipartimento Elettrotecn & Elettron, I-70125 Bari, Italy
关键词
Monte Carlo method; Principal Components analysis; high electron mobility transistor;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A statistical methodology is presented for the extraction of equivalent circuit parameters (ECP's) of high electron mobility transistors (HEMT). This methodology, based upon the Principal Component Analysis (PCA) combined with the Monte Carlo method, can be successfully employed for evaluating HEMT's reliability and their technological dispersion effects, too. Furthermore the method provides an efficient system to derive ECP's values when the measured ones are not available. Thanks to this procedure the device designer can gain a noticeable rid during the design.
引用
收藏
页码:806 / 809
页数:4
相关论文
共 50 条
  • [41] SCHREIDER,YA - MONTE CARLO METHOD - METHOD OF STATISTICAL TRIALS
    HENNEY, AG
    PHYSICS TODAY, 1967, 20 (01) : 129 - &
  • [42] SHREIDER,YA - METHOD OF STATISTICAL TESTING - MONTE CARLO METHOD
    ENDERLEI.
    BIOMETRISCHE ZEITSCHRIFT, 1967, 9 (01): : 70 - 70
  • [43] SHREIDER,YA - METHOD OF STATISTICAL TESTING (MONTE CARLO METHOD)
    BURGOYNE, FD
    ICC BULLETIN, 1967, 6 (02): : 125 - &
  • [44] A COMBINED MONTE CARLO AND QUASI-MONTE CARLO METHOD FOR ESTIMATING MULTIDIMENSIONAL INTEGRALS
    Rosca, Natalia
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (01): : 125 - 140
  • [45] Statistical threshold voltage fluctuation analysis by Monte Carlo ion implantation method
    Oda, Y
    Ohkura, Y
    Suzuki, K
    Ito, S
    Amakawa, H
    Nishi, K
    IEICE TRANSACTIONS ON ELECTRONICS, 2003, E86C (03): : 416 - 420
  • [46] Application of Statistical Data Processing for Solving the Problem of Face Recognition by Using Principal Components Analysis Method
    Min, Wai Yan
    Romanova, Ekaterina
    Lisovec, Yuri
    San, Aung Myo
    PROCEEDINGS OF THE 2019 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EICONRUS), 2019, : 2208 - 2212
  • [47] Modeling uncertain data using Monte Carlo integration method for clustering
    Sharma, Krishna Kumar
    Seal, Ayan
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 137 : 100 - 116
  • [48] Modeling of recrystallization using Monte Carlo method based on EBSD data
    Tarasiuk, J
    Gerber, P
    Bacroix, B
    Piekos, K
    TEXTURES OF MATERIALS, PTS 1 AND 2, 2002, 408-4 : 395 - 400
  • [49] Quantitative modeling of tissue images using a parallel Monte Carlo method
    Li, K
    Lu, JQ
    Brock, RS
    Yang, BW
    Zhao, SS
    Hu, XH
    Optical Tomography and Spectroscopy of Tissue VI, 2005, 5693 : 82 - 87
  • [50] Error synthesis and statistical analysis on stepped mirror array by Monte Carlo method
    Lu Jin-Guang
    Liang Jing-Qiu
    Liang Zhong-Zhu
    ACTA PHYSICA SINICA, 2012, 61 (22)