Effects of electron-ion temperature equilibration on inertial confinement fusion implosions

被引:38
|
作者
Xu, Barry [1 ]
Hu, S. X. [1 ]
机构
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 01期
关键词
CONDUCTIVITY;
D O I
10.1103/PhysRevE.84.016408
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al., Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown similar to 6% more laser absorption, similar to 6%-15% higher coronal temperatures, and similar to 10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by similar to 10% among the different electron-ion temperature-relaxation models.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Electron-Ion Equilibration in Ultrafast Heated Graphite
    White, T. G.
    Hartley, N. J.
    Borm, B.
    Crowley, B. J. B.
    Harris, J. W. O.
    Hochhaus, D. C.
    Kaempfer, T.
    Li, K.
    Neumayer, P.
    Pattison, L. K.
    Pfeifer, F.
    Richardson, S.
    Robinson, A. P. L.
    Uschmann, I.
    Gregori, G.
    PHYSICAL REVIEW LETTERS, 2014, 112 (14)
  • [42] Developing one-dimensional implosions for inertial confinement fusion science
    J.L.Kline
    S.A.Yi
    A.N.Simakov
    R.E.Olson
    D.C.Wilson
    G.A.Kyrala
    T.S.Perry
    S.H.Batha
    E.L.Dewald
    J.E.Ralph
    D.J.Strozzi
    A.G.MacPhee
    D.A.Callahan
    D.Hinkel
    O.A.Hurricane
    R.J.Leeper
    A.B.Zylstra
    R.R.Peterson
    B.M.Haines
    L.Yin
    P.A.Bradley
    R.C.Shah
    T.Braun
    J.Biener
    B.J.Kozioziemski
    J.D.Sater
    M.M.Biener
    A.V.Hamza
    A.Nikroo
    L.F.Berzak Hopkins
    D.Ho
    S.LePape
    N.B.Meezan
    D.S.Montgomery
    W.S.Daughton
    E.C.Merritt
    T.Cardenas
    E.S.Dodd
    HighPowerLaserScienceandEngineering, 2016, 4 (04) : 70 - 76
  • [43] Developing one-dimensional implosions for inertial confinement fusion science
    Kline, J. L.
    Yi, S. A.
    Simakov, A. N.
    Olson, R. E.
    Wilson, D. C.
    Kyrala, G. A.
    Perry, T. S.
    Batha, S. H.
    Dewald, E. L.
    Ralph, J. E.
    Strozzi, D. J.
    MacPhee, A. G.
    Callahan, D. A.
    Hinkel, D.
    Hurricane, O. A.
    Leeper, R. J.
    Zylstra, A. B.
    Peterson, R. R.
    Haines, B. M.
    Yin, L.
    Bradley, P. A.
    Shah, R. C.
    Braun, T.
    Biener, J.
    Kozioziemski, B. J.
    Sater, J. D.
    Biener, M. M.
    Hamza, A. V.
    Nikroo, A.
    Hopkins, L. F. Berzak
    Ho, D.
    LePape, S.
    Meezan, N. B.
    Montgomery, D. S.
    Daughton, W. S.
    Merritt, E. C.
    Cardenas, T.
    Dodd, E. S.
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2016, 4
  • [44] Diagnostic signatures of performance degrading perturbations in inertial confinement fusion implosions
    McGlinchey, K.
    Appelbe, B. D.
    Crilly, A. J.
    Tong, J. K.
    Walsh, C. A.
    Chittenden, J. P.
    PHYSICS OF PLASMAS, 2018, 25 (12)
  • [45] Self-Similar Structure and Experimental Signatures of Suprathermal Ion Distribution in Inertial Confinement Fusion Implosions
    Kagan, Grigory
    Svyatskiy, D.
    Rinderknecht, H. G.
    Rosenberg, M. J.
    Zylstra, A. B.
    Huang, C. -K.
    McDevitt, C. J.
    PHYSICAL REVIEW LETTERS, 2015, 115 (10)
  • [46] Density determination of the thermonuclear fuel region in inertial confinement fusion implosions
    Volegov, P. L.
    Batha, S. H.
    Geppert-Kleinrath, V.
    Danly, C. R.
    Merrill, F. E.
    Wilde, C. H.
    Wilson, D. C.
    Casey, D. T.
    Fittinghoff, D.
    Appelbe, B.
    Chittenden, J. P.
    Crilly, A. J.
    McGlinchey, K.
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (08)
  • [47] Interactive tools designed to study mix in inertial confinement fusion implosions
    Welser-Sherrill, L.
    Cooley, J. H.
    Wilson, D. C.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (06) : 835 - 841
  • [48] Proton core imaging of the nuclear burn in inertial confinement fusion implosions
    DeCiantis, JL
    Séguin, FH
    Frenje, JA
    Berube, V
    Canavan, MJ
    Chen, CD
    Kurebayashi, S
    Li, CK
    Rygg, JR
    Schwartz, BE
    Petrasso, RD
    Delettrez, JA
    Regan, SP
    Smalyuk, VA
    Knauer, JP
    Marshall, FJ
    Meyerhofer, DD
    Roberts, S
    Sangster, TC
    Stoeckl, C
    Mikaelian, K
    Park, HS
    Robey, HF
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (04):
  • [49] Perturbation modifications by pre-magnetisation of inertial confinement fusion implosions
    Walsh, C. A.
    McGlinchey, K.
    Tong, J. K.
    Appelbe, B. D.
    Crilly, A.
    Zhang, M. F.
    Chittenden, J. P.
    PHYSICS OF PLASMAS, 2019, 26 (02)
  • [50] Magnetically Driven Implosions for Inertial Confinement Fusion at Sandia National Laboratories
    Cuneo, M. E.
    Herrmann, M. C.
    Sinars, D. B.
    Slutz, S. A.
    Stygar, W. A.
    Vesey, R. A.
    Sefkow, A. B.
    Rochau, G. A.
    Chandler, G. A.
    Bailey, J. E.
    Porter, J. L.
    McBride, R. D.
    Rovang, D. C.
    Rovang, D. C.
    Mazarakis, M. G.
    Yu, E. P.
    Lamppa, D. C.
    Peterson, K. J.
    Nakhleh, C.
    Hansen, S. B.
    Lopez, A. J.
    Savage, M. E.
    Jennings, C. A.
    Martin, M. R.
    Lemke, R. W.
    Atherton, B. W.
    Smith, I. C.
    Rambo, P. K.
    Jones, M.
    Lopez, M. R.
    Christenson, P. J.
    Sweeney, M. A.
    Jones, B.
    McPherson, L. A.
    Harding, E.
    Gomez, M. R.
    Knapp, P. F.
    Awe, T. J.
    Leeper, R. J.
    Ruiz, C. L.
    Cooper, G. W.
    Hahn, K. D.
    McKenney, J.
    Owen, A. C.
    McKee, G. R.
    Leifeste, G. T.
    Ampleford, D. J.
    Waisman, E. M.
    Harvey-Thompson, A.
    Kaye, R. J.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (12) : 3222 - 3245