Effects of electron-ion temperature equilibration on inertial confinement fusion implosions

被引:38
|
作者
Xu, Barry [1 ]
Hu, S. X. [1 ]
机构
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 01期
关键词
CONDUCTIVITY;
D O I
10.1103/PhysRevE.84.016408
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al., Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown similar to 6% more laser absorption, similar to 6%-15% higher coronal temperatures, and similar to 10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by similar to 10% among the different electron-ion temperature-relaxation models.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Analysis of limited coverage effects on areal density measurements in inertial confinement fusion implosions
    Gopalaswamy, V.
    Betti, R.
    Radha, P. B.
    Crilly, A. J.
    Woo, K. M.
    Lees, A.
    Thomas, C.
    Igumenshchev, I. V.
    Miller, S. C.
    Knauer, J. P.
    Stoeckl, C.
    Forrest, C. J.
    Mannion, O. M.
    Mohamed, Z. L.
    Rinderknecht, H. G.
    Heuer, P. V.
    PHYSICS OF PLASMAS, 2022, 29 (07)
  • [32] Impact of Localized Radiative Loss on Inertial Confinement Fusion Implosions
    Pak, A.
    Divol, L.
    Weber, C. R.
    Hopkins, L. F. Berzak
    Clark, D. S.
    Dewald, E. L.
    Fittinghoff, D. N.
    Geppert-Kleinrath, V
    Hohenberger, M.
    Le Pape, S.
    Ma, T.
    MacPhee, A. G.
    Mariscal, D. A.
    Marley, E.
    Moore, A. S.
    Pickworth, L. A.
    Volegov, P. L.
    Wilde, C.
    Hurricane, O. A.
    Patel, P. K.
    PHYSICAL REVIEW LETTERS, 2020, 124 (14)
  • [33] Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions
    Hoffman, Nelson M.
    Zimmerman, George B.
    Molvig, Kim
    Rinderknecht, Hans G.
    Rosenberg, Michael J.
    Albright, B. J.
    Simakov, Andrei N.
    Sio, Hong
    Zylstra, Alex B.
    Johnson, Maria Gatu
    Seguin, Fredrick H.
    Frenje, Johan A.
    Li, C. K.
    Petrasso, Richard D.
    Higdon, David M.
    Srinivasan, Gowri
    Glebov, Vladimir Yu.
    Stoeckl, Christian
    Seka, Wolf
    Sangster, T. Craig
    PHYSICS OF PLASMAS, 2015, 22 (05)
  • [34] Electric field and ionization-gradient effects on inertial-confinement-fusion implosions
    Amendt, P. A.
    Milovich, J. L.
    Wilks, S. C.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
  • [35] Thermal Temperature Measurements of Inertial Fusion Implosions
    Jarrott, L. C.
    Bachmann, B.
    Ma, T.
    Benedetti, L. R.
    Field, F. E.
    Hartouni, E. P.
    Hatarik, R.
    Izumi, N.
    Khan, S. F.
    Landen, O. L.
    Nagel, S. R.
    Nora, R.
    Pak, A.
    Peterson, J. L.
    Schneider, M. B.
    Springer, P. T.
    Patel, P. K.
    PHYSICAL REVIEW LETTERS, 2018, 121 (08)
  • [36] Experimentally Inferred Fusion Yield Dependencies of OMEGA Inertial Confinement Fusion Implosions
    Lees, A.
    Betti, R.
    Knauer, J. P.
    Gopalaswamy, V.
    Patel, D.
    Woo, K. M.
    Anderson, K. S.
    Campbell, E. M.
    Cao, D.
    Carroll-Nellenback, J.
    Epstein, R.
    Forrest, C.
    Goncharov, V. N.
    Harding, D. R.
    Hu, S. X.
    Igumenshchev, I. V.
    Janezic, R. T.
    Mannion, O. M.
    Radha, P. B.
    Regan, S. P.
    Shvydky, A.
    Shah, R. C.
    Shmayda, W. T.
    Stoeckl, C.
    Theobald, W.
    Thomas, C.
    PHYSICAL REVIEW LETTERS, 2021, 127 (10)
  • [37] Design of multi neutron-to-gamma converter array for measuring time resolved ion temperature of inertial confinement fusion implosions
    Meaney, K. D.
    Kim, Y.
    Hoffman, N. M.
    Geppert-Kleinrath, H.
    Jorgenson, J.
    Hochanadel, M.
    Appelbe, B.
    Crilly, A.
    Basu, R.
    Saw, E. Y.
    Moore, A.
    Schlossberg, D.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (08):
  • [38] Instrument design for an inertial confinement fusion ion temperature imager
    Birge, N.
    Geppert-Kleinrath, V.
    Danly, C.
    Haines, B.
    Ivancic, S. T.
    Jorgenson, J.
    Katz, J.
    Mendoza, E.
    Sorce, A. T.
    Tafoya, L.
    Wilde, C.
    Volegov, P.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (11):
  • [39] ELECTRON-ION EQUILIBRATION IN A STRONGLY COUPLED PLASMA
    NG, A
    CELLIERS, P
    XU, G
    FORSMAN, A
    PHYSICAL REVIEW E, 1995, 52 (04): : 4299 - 4310
  • [40] ELECTRON-ION EQUILIBRATION IN A PARTIALLY DEGENERATE PLASMA
    BRYSK, H
    PLASMA PHYSICS AND CONTROLLED FUSION, 1974, 16 (10) : 927 - 932