Effects of electron-ion temperature equilibration on inertial confinement fusion implosions

被引:38
|
作者
Xu, Barry [1 ]
Hu, S. X. [1 ]
机构
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 01期
关键词
CONDUCTIVITY;
D O I
10.1103/PhysRevE.84.016408
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al., Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown similar to 6% more laser absorption, similar to 6%-15% higher coronal temperatures, and similar to 10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by similar to 10% among the different electron-ion temperature-relaxation models.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] The rate of development of atomic mixing and temperature equilibration in inertial confinement fusion implosions
    Haines, Brian M.
    Shah, R. C.
    Smidt, J. M.
    Albright, B. J.
    Cardenas, T.
    Douglas, M. R.
    Forrest, C.
    Glebov, V. Yu.
    Gunderson, M. A.
    Hamilton, C.
    Henderson, K.
    Kim, Y.
    Lee, M. N.
    Murphy, T. J.
    Oertel, J. A.
    Olson, R. E.
    Patterson, B. M.
    Randolph, R. B.
    Schmidt, D.
    PHYSICS OF PLASMAS, 2020, 27 (10)
  • [2] Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions
    Woo, K. M.
    Betti, R.
    Shvarts, D.
    Bose, A.
    Patel, D.
    Yan, R.
    Chang, P. -Y.
    Mannion, O. M.
    Epstein, R.
    Delettrez, J. A.
    Charissis, M.
    Anderson, K. S.
    Radha, P. B.
    Shvydky, A.
    Igumenshchev, I. V.
    Gopalaswamy, V.
    Christopherson, A. R.
    Sanz, J.
    Aluie, H.
    PHYSICS OF PLASMAS, 2018, 25 (05)
  • [3] Investigation of the alpha particle-induced electron-ion temperature nonequilibrium burning process in inertial confinement fusion
    Lin, Weisheng
    Zhang, Huasen
    He, Bin
    Cai, Hongbo
    Zhu, Shaoping
    PHYSICS OF PLASMAS, 2024, 31 (12)
  • [4] Strong Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions
    Hu, S. X.
    Militzer, B.
    Goncharov, V. N.
    Skupsky, S.
    PHYSICAL REVIEW LETTERS, 2010, 104 (23)
  • [5] Observation of interspecies ion separation in inertial-confinement-fusion implosions
    Hsu, S. C.
    Joshi, T. R.
    Hakel, P.
    Vold, E. L.
    Schmitt, M. J.
    Hoffman, N. M.
    Rauenzahn, R. M.
    Kagan, G.
    Tang, X. -Z.
    Mancini, R. C.
    Kim, Y.
    Herrmann, H. W.
    EPL, 2016, 115 (06)
  • [6] Core temperature and density profile measurements in inertial confinement fusion implosions
    Koch, J. A.
    Izumi, N.
    Welser, L. A.
    Mancini, R. C.
    Haan, S. W.
    Lee, R. W.
    Amendt, P. A.
    Barbee, T. W., Jr.
    Dalhed, S.
    Fujita, K.
    Golovkin, I. E.
    Klein, L.
    Landen, O. L.
    Marshall, F. J.
    Meyerhofer, D. D.
    Nishimura, H.
    Ochi, Y.
    Regan, S.
    Sangster, T. C.
    Smalyuk, V.
    Tommasini, R.
    HIGH ENERGY DENSITY PHYSICS, 2008, 4 (1-2) : 1 - 17
  • [7] Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions
    Amendt, Peter
    Bellei, Claudio
    Ross, J. Steven
    Salmonson, Jay
    PHYSICAL REVIEW E, 2015, 91 (02):
  • [8] Deceleration phase of inertial confinement fusion implosions
    Betti, R
    Anderson, K
    Goncharov, VN
    McCrory, RL
    Meyerhofer, DD
    Skupsky, S
    Town, RPJ
    PHYSICS OF PLASMAS, 2002, 9 (05) : 2277 - 2286
  • [9] Neutron imaging of inertial confinement fusion implosions
    Fittinghoff, D. N.
    Birge, N.
    Geppert-Kleinrath, V.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (02):
  • [10] Ensemble simulations of inertial confinement fusion implosions
    Nora, Ryan
    Peterson, Jayson Luc
    Spears, Brian Keith
    Field, John Everett
    Brandon, Scott
    STATISTICAL ANALYSIS AND DATA MINING, 2017, 10 (04) : 230 - 237