A polycyclic presentation for the q-tensor square of a polycyclic group

被引:1
|
作者
Martins Dias, Ivonildes Ribeiro [1 ]
Rocco, Norai Romeu [2 ]
机构
[1] Univ Fed Goias, Inst Matemat & Estat, BR-74001970 Goiania, Go, Brazil
[2] Univ Brasilia, Dept Matemat IE, BR-70910900 Brasilia, DF, Brazil
关键词
NON-ABELIAN TENSOR; PRODUCTS;
D O I
10.1515/jgth-2019-0032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group and q a non-negative integer. We denote by v(q)(G) a certain extension of the q-tensor square G circle times(q) G by G x G. In this paper, we describe an algorithm for deriving a polycyclic presentation for G circle times(q) G when G is polycyclic, via its embedding into v(q) (G). Furthermore, we derive polycyclic presentations for the q-exterior square G boolean AND(q) G and for the second homology group H-2 (G, Z(q)). Additionally, we establish a criterion for computing the q-exterior center Z(q)(boolean AND) A(G) of a polycyclic group G, which is helpful for deciding whether or not G is capable modulo q. These results extend to all q >= 0 generalizing methods due to Eick and Nickel for the case q = 0.
引用
收藏
页码:97 / 120
页数:24
相关论文
共 50 条
  • [1] On the q-tensor square of a group
    Bueno, Ticianne P.
    Rocco, Norai R.
    JOURNAL OF GROUP THEORY, 2011, 14 (05) : 785 - 805
  • [2] The q-tensor square of a powerful p-group
    Concalves, Nathalia Nogueira
    Rocco, Norai Romeu
    JOURNAL OF ALGEBRA, 2020, 551 : 9 - 22
  • [3] Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group
    Eick, Bettina
    Nickel, Werner
    JOURNAL OF ALGEBRA, 2008, 320 (02) : 927 - 944
  • [4] The q-tensor square of finitely generated nilpotent groups, q odd
    Rocco, Norai R.
    Rodrigues, Eunice C. P.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (11)
  • [5] ON Q-TENSOR OPERATORS FOR QUANTUM GROUPS
    BIEDENHARN, LC
    TARLINI, M
    LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (04) : 271 - 278
  • [6] Consistent Polycyclic Presentation of a Bieberbach Group with a Nonabelian Point Group
    Mohammad, Siti Afiqah
    Sarmin, Nor Haniza
    Hassim, Hazzirah Izzati Mat
    PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: ENHANCING THE ROLE OF MATHEMATICS IN INTERDISCIPLINARY RESEARCH, 2016, 1707
  • [7] Q-TENSOR SPACE AND Q-WEYL MODULES
    DIPPER, R
    JAMES, G
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 327 (01) : 251 - 282
  • [8] On q-tensor products of Cuntz algebras
    Kuzmin, Alexey
    Ostrovskyi, Vasyl
    Proskurin, Danylo
    Weber, Moritz
    Yakymiv, Roman
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (02)
  • [9] The non-abelian tensor product of polycyclic groups is polycyclic
    Moravec, Primoz
    JOURNAL OF GROUP THEORY, 2007, 10 (06) : 795 - 798
  • [10] When is the automorphism group of a virtually polycyclic group virtually polycyclic?
    Eick, B
    GLASGOW MATHEMATICAL JOURNAL, 2003, 45 : 527 - 533