A polycyclic presentation for the q-tensor square of a polycyclic group

被引:1
|
作者
Martins Dias, Ivonildes Ribeiro [1 ]
Rocco, Norai Romeu [2 ]
机构
[1] Univ Fed Goias, Inst Matemat & Estat, BR-74001970 Goiania, Go, Brazil
[2] Univ Brasilia, Dept Matemat IE, BR-70910900 Brasilia, DF, Brazil
关键词
NON-ABELIAN TENSOR; PRODUCTS;
D O I
10.1515/jgth-2019-0032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group and q a non-negative integer. We denote by v(q)(G) a certain extension of the q-tensor square G circle times(q) G by G x G. In this paper, we describe an algorithm for deriving a polycyclic presentation for G circle times(q) G when G is polycyclic, via its embedding into v(q) (G). Furthermore, we derive polycyclic presentations for the q-exterior square G boolean AND(q) G and for the second homology group H-2 (G, Z(q)). Additionally, we establish a criterion for computing the q-exterior center Z(q)(boolean AND) A(G) of a polycyclic group G, which is helpful for deciding whether or not G is capable modulo q. These results extend to all q >= 0 generalizing methods due to Eick and Nickel for the case q = 0.
引用
收藏
页码:97 / 120
页数:24
相关论文
共 50 条
  • [21] Implementations off Q-Tensor and vector approaches for ICB mole
    Cho, Sang Young
    Yang, Seung Soo
    Yoon, Hyoung Jin
    Won, Tae Young
    IDMC'07: PROCEEDINGS OF THE INTERNATIONAL DISPLAY MANUFACTURING CONFERENCE 2007, 2007, : 660 - +
  • [22] Incompressible Limit of the Compressible Q-tensor System of Liquid Crystals
    Yi-xuan WANG
    Acta Mathematicae Applicatae Sinica, 2023, 39 (01) : 179 - 201
  • [23] Incompressible Limit of the Compressible Q-tensor System of Liquid Crystals
    Yi-xuan Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 179 - 201
  • [24] Incompressible Limit of the Compressible Q-tensor System of Liquid Crystals
    Wang, Yi-xuan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (01): : 179 - 201
  • [25] On the Frattini subgroup of a polycyclic group
    Eick, Bettina
    Neumann-Brosig, Matthias
    JOURNAL OF ALGEBRA, 2022, 591 : 523 - 537
  • [26] THE WIELANDT SUBGROUP OF A POLYCYCLIC GROUP
    COSSEY, J
    GLASGOW MATHEMATICAL JOURNAL, 1991, 33 : 231 - 234
  • [27] Q-TENSOR METHOD OF DETERMINING IRREDUCIBLE REPRESENTATION OF QUANTUM ALGEBRA SU(Q)(3)
    YANG, YP
    YU, ZR
    MODERN PHYSICS LETTERS A, 1993, 8 (32) : 3025 - 3030
  • [28] Computing the nonabelian tensor squares of polycyclic groups
    Blyth, Russell D.
    Morse, Robert Fitzgerald
    JOURNAL OF ALGEBRA, 2009, 321 (08) : 2139 - 2148
  • [29] Some structural and closure properties of an extension of the q-tensor product of groups, q ≥ 0
    Dias, Ivonildes Ribeiro Martins
    Rocco, Norai Romeu
    Rodrigues, Eunice Candida Pereira
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (06) : 2491 - 2504
  • [30] Q-tensor model for undulatory swimming in lyotropic liquid crystal polymers
    Lin, Zhaowu
    Chen, Sheng
    Gao, Tong
    JOURNAL OF FLUID MECHANICS, 2021, 921