We study the non-abelian tensor square modulo q of a group, where q is a non-negative integer, via an operator v(q) in the class of groups. Structural properties and finiteness conditions of v(q)(G) are investigated. We compute the non-abelian tensor square modulo q of cyclic groups and develop a theory for computing v(q)(G) and some of its relevant sections for polycyclic groups G. This extends the existing theory from the case q = 0 to all non-negative integers q. Additionally, a table of examples is produced with the help of the GAP system.
机构:
Chalmers Univ Technol, Dept Math Sci, Gothenburg, Sweden
Univ Gothenburg, Gothenburg, SwedenChalmers Univ Technol, Dept Math Sci, Gothenburg, Sweden
Kuzmin, Alexey
Ostrovskyi, Vasyl
论文数: 0引用数: 0
h-index: 0
机构:
NAS Ukraine, Inst Math, Kiev, UkraineChalmers Univ Technol, Dept Math Sci, Gothenburg, Sweden
Ostrovskyi, Vasyl
Proskurin, Danylo
论文数: 0引用数: 0
h-index: 0
机构:
Kyiv Natl Taras Shevchenko Univ, Fac Comp Sci & Cybernet, Kiev, UkraineChalmers Univ Technol, Dept Math Sci, Gothenburg, Sweden
Proskurin, Danylo
Weber, Moritz
论文数: 0引用数: 0
h-index: 0
机构:
Saarland Univ, Fac Math, Saarbrucken, GermanyChalmers Univ Technol, Dept Math Sci, Gothenburg, Sweden
Weber, Moritz
Yakymiv, Roman
论文数: 0引用数: 0
h-index: 0
机构:
Kyiv Natl Taras Shevchenko Univ, Fac Comp Sci & Cybernet, Kiev, UkraineChalmers Univ Technol, Dept Math Sci, Gothenburg, Sweden