Hyperspectral Image Super-Resolution via Recurrent Feedback Embedding and SpatialSpectral Consistency Regularization

被引:63
|
作者
Wang, Xinya [1 ]
Ma, Jiayi [1 ]
Jiang, Junjun [2 ]
机构
[1] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Spatial resolution; Image reconstruction; Correlation; Feature extraction; Superresolution; Training; Feedback embedding; hyperspectral image; recurrent network; super-resolution (SR);
D O I
10.1109/TGRS.2021.3064450
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral images with tens to hundreds of spectral bands usually suffer from low spatial resolution due to the limitation of the amount of incident energy. Without auxiliary images, the single hyperspectral image super-resolution (SR) method is still a challenging problem because of the high-dimensionality characteristic and special spectral patterns of hyperspectral images. Failing to thoroughly explore the coherence among hyperspectral bands and preserve the spatialx2013;spectral structure of the scene, the performance of existing methods is still limited. In this article, we propose a novel single hyperspectral image SR method termed RFSR, which models the spectrum correlations from a sequence perspective. Specifically, we introduce a recurrent feedback network to fully exploit the complementary and consecutive information among the spectra of the hyperspectral data. With the group strategy, each grouping band is first super-resolved by exploring the consecutive information among groups via feedback embedding. For better preservation of the spatialx2013;spectral structure among hyperspectral data, a regularization network is subsequently appended to enforce spatialx2013;spectral correlations over the intermediate estimation. Experimental results on both natural and remote sensing hyperspectral images demonstrate the advantage of our approach over the state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Adaptive Regularization of Infrared Image Super-resolution Reconstruction
    Dai Shao-Sheng
    Xiang Hai-Yan
    Du Zhi-Hui
    Liu Jin-Song
    2014 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT, 2014,
  • [42] An Adaptive Regularization Image Super-resolution Reconstruction Algorithm
    Zhao Xiao-qiang
    Jia Yun-xia
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 7258 - 7262
  • [43] Super-Resolution Image Reconstruction with Adaptive Regularization Parameter
    Shi Yan-xin
    Cheng Yong-mei
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 39 (09): : 228 - 235
  • [44] Super-resolution image reconstruction with adaptive regularization parameter
    Shi, Yan-Xin
    Cheng, Yong-Mei
    Shi, Y.-X. (shiyxx001@sina.com), 1600, CESER Publications, Post Box No. 113, Roorkee, 247667, India (39): : 227 - 235
  • [45] Spatially Varying Regularization of Image Sequences Super-Resolution
    An, Yaozu
    Lu, Yao
    Zhai, Zhengang
    COMPUTER VISION - ACCV 2009, PT III, 2010, 5996 : 475 - 484
  • [46] Hyperspectral image super-resolution via multi-domain feature learning
    Li, Qiang
    Yuan, Yuan
    Wang, Qi
    NEUROCOMPUTING, 2022, 472 : 85 - 94
  • [47] Hyperspectral image super-resolution via double-flow pretreatment network
    Li, Ning
    Ma, Rubin
    Jiao, Jichao
    Qi, Wangjing
    Li, Yuxuan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 28027 - 28038
  • [48] Hyperspectral image super-resolution via double-flow pretreatment network
    Ning Li
    Rubin Ma
    Jichao Jiao
    Wangjing Qi
    Yuxuan Li
    Multimedia Tools and Applications, 2024, 83 : 28027 - 28038
  • [49] Unified regularization framework for blind image super-resolution
    Chen, Yuanxu
    Luo, Yupin
    Hu, Dongcheng
    OPTICAL ENGINEERING, 2007, 46 (12)
  • [50] Image Super-Resolution via Efficient Transformer Embedding Frequency Decomposition With Restart
    Zuo, Yifan
    Yao, Wenhao
    Hu, Yuqi
    Fang, Yuming
    Liu, Wei
    Peng, Yuxin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4670 - 4685