Hyperspectral Image Super-Resolution via Recurrent Feedback Embedding and SpatialSpectral Consistency Regularization

被引:63
|
作者
Wang, Xinya [1 ]
Ma, Jiayi [1 ]
Jiang, Junjun [2 ]
机构
[1] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Spatial resolution; Image reconstruction; Correlation; Feature extraction; Superresolution; Training; Feedback embedding; hyperspectral image; recurrent network; super-resolution (SR);
D O I
10.1109/TGRS.2021.3064450
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral images with tens to hundreds of spectral bands usually suffer from low spatial resolution due to the limitation of the amount of incident energy. Without auxiliary images, the single hyperspectral image super-resolution (SR) method is still a challenging problem because of the high-dimensionality characteristic and special spectral patterns of hyperspectral images. Failing to thoroughly explore the coherence among hyperspectral bands and preserve the spatialx2013;spectral structure of the scene, the performance of existing methods is still limited. In this article, we propose a novel single hyperspectral image SR method termed RFSR, which models the spectrum correlations from a sequence perspective. Specifically, we introduce a recurrent feedback network to fully exploit the complementary and consecutive information among the spectra of the hyperspectral data. With the group strategy, each grouping band is first super-resolved by exploring the consecutive information among groups via feedback embedding. For better preservation of the spatialx2013;spectral structure among hyperspectral data, a regularization network is subsequently appended to enforce spatialx2013;spectral correlations over the intermediate estimation. Experimental results on both natural and remote sensing hyperspectral images demonstrate the advantage of our approach over the state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Deep Blind Hyperspectral Image Super-Resolution
    Zhang, Lei
    Nie, Jiangtao
    Wei, Wei
    Li, Yong
    Zhang, Yanning
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) : 2388 - 2400
  • [32] Hyperspectral imagery super-resolution by sparse representation and spectral regularization
    Zhao, Yongqiang
    Yang, Jinxiang
    Zhang, Qingyong
    Song, Lin
    Cheng, Yongmei
    Pan, Quan
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,
  • [33] Hyperspectral imagery super-resolution by sparse representation and spectral regularization
    Yongqiang Zhao
    Jinxiang Yang
    Qingyong Zhang
    Lin Song
    Yongmei Cheng
    Quan Pan
    EURASIP Journal on Advances in Signal Processing, 2011
  • [34] Hyperspectral Image Super-Resolution via Sparsity Regularization-Based Spatial-Spectral Tensor Subspace Representation
    Peng, Yidong
    Li, Weisheng
    Luo, Xiaobo
    Du, Jiao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 11707 - 11722
  • [35] Hyperspectral image super-resolution via subspace-based fast low tensor multi-rank regularization
    Long, Jian
    Peng, Yuanxi
    Li, Jun
    Zhang, Longlong
    Xu, Yunpeng
    INFRARED PHYSICS & TECHNOLOGY, 2021, 116
  • [36] Application of regularization technique in image super-resolution algorithm via sparse representation
    Huang D.-T.
    Huang W.-Q.
    Huang H.
    Zheng L.-X.
    Optoelectronics Letters, 2017, 13 (6) : 439 - 443
  • [37] A Recurrent Feedback Hyperspectral Image Super-Resolution Reconstruction Method by Using Self-Attention-Based Pixel Awareness
    Feng, Ruyi
    Guo, Zhongyu
    Wang, Xiaofeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 18502 - 18516
  • [38] Application of regularization technique in image super-resolution algorithm via sparse representation
    黄德天
    黄炜钦
    黄辉
    郑力新
    OptoelectronicsLetters, 2017, 13 (06) : 439 - 443
  • [39] Hyperspectral Image Super-Resolution Based on Tensor Spatial-Spectral Joint Correlation Regularization
    Xing, Yinghui
    Yang, Shuyuan
    Jiao, Licheng
    IEEE ACCESS, 2020, 8 : 63654 - 63665
  • [40] Image Super-Resolution via Dual-State Recurrent Networks
    Han, Wei
    Chang, Shiyu
    Liu, Ding
    Yu, Mo
    Witbrock, Michael
    Huang, Thomas S.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1654 - 1663