Projective reduce order synchronization of fractional order chaotic systems with unknown parameters

被引:7
|
作者
Al-Sawalha, M. Mossa [1 ]
机构
[1] Univ Hail, Fac Sci, Math Dept, Hail, Saudi Arabia
来源
关键词
Projective; reduce order synchronization; adaptive control; unknown parameters; Lyapunov stability theory; ADAPTIVE-CONTROL METHOD; ACTIVE CONTROL; SLIDING MODE; UNCERTAIN PARAMETERS; HYPERCHAOTIC SYSTEM; LOGISTIC MAP;
D O I
10.22436/jnsa.010.04.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper, mainly concerns the adaptive projective reduce order synchronization behavior of uncertain chaotic system. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of two chaotic and hyperchaotic systems asymptotically synchronized up to a desired identical and different scaling matrix. Numerical simulation results show that the proposed method is effective, convenient, and also faster for projective dual synchronization of chaotic and hyperchaotic systems. (C) 2017 All rights reserved.
引用
收藏
页码:2103 / 2114
页数:12
相关论文
共 50 条
  • [41] Reduced-order synchronization of fractional order chaotic systems with fully unknown parameters using modified adaptive control
    Al-Sawalha, M. Mossa
    Shoaib, M.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (04): : 1815 - 1825
  • [42] Projective Synchronization for a Class of Fractional-Order Chaotic Systems with Fractional-Order in the (1, 2) Interval
    Zhou, Ping
    Bai, Rongji
    Zheng, Jiming
    ENTROPY, 2015, 17 (03): : 1123 - 1134
  • [43] Full state hybrid projective synchronization of variable-order fractional chaotic/hyperchaotic systems with nonlinear external disturbances and unknown parameters
    Zhang, Li
    Liu, Tao
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1064 - 1076
  • [44] FUNCTION PROJECTIVE SYNCHRONIZATION OF THE CHAOTIC SYSTEMS WITH PARAMETERS UNKNOWN
    Zhao, Jiakun
    Wu, Ying
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (21):
  • [45] Modified Projective Synchronization of Chaotic Systems with Unknown Parameters
    Yan, Minxiu
    Fan, Liping
    MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION IV, PTS 1 AND 2, 2012, 128-129 : 1182 - 1185
  • [46] Robust modified projective synchronization of fractional-order chaotic systems with parameters perturbation and external disturbance
    王东风
    张金营
    王晓燕
    ChinesePhysicsB, 2013, 22 (10) : 166 - 172
  • [47] Robust modified projective synchronization of fractional-order chaotic systems with parameters perturbation and external disturbance
    Wang Dong-Feng
    Zhang Jin-Ying
    Wang Xiao-Yan
    CHINESE PHYSICS B, 2013, 22 (10)
  • [48] Generalized dislocated lag function projective synchronization of fractional order chaotic systems with fully uncertain parameters
    Wang, Cong
    Zhang, Hong-li
    Fan, Wen-hui
    CHAOS SOLITONS & FRACTALS, 2017, 98 : 14 - 21
  • [49] Adaptive impulsive synchronization of fractional order chaotic system with uncertain and unknown parameters
    Li, Dong
    Zhang, Xing-peng
    Hu, Yu-ting
    Yang, Yuan-yuan
    NEUROCOMPUTING, 2015, 167 : 165 - 171
  • [50] The adaptive synchronization of fractional-order Liu chaotic system with unknown parameters
    Nourian, Adeleh
    Balochian, Saeed
    PRAMANA-JOURNAL OF PHYSICS, 2016, 86 (06): : 1401 - 1407