Projective reduce order synchronization of fractional order chaotic systems with unknown parameters

被引:7
|
作者
Al-Sawalha, M. Mossa [1 ]
机构
[1] Univ Hail, Fac Sci, Math Dept, Hail, Saudi Arabia
来源
关键词
Projective; reduce order synchronization; adaptive control; unknown parameters; Lyapunov stability theory; ADAPTIVE-CONTROL METHOD; ACTIVE CONTROL; SLIDING MODE; UNCERTAIN PARAMETERS; HYPERCHAOTIC SYSTEM; LOGISTIC MAP;
D O I
10.22436/jnsa.010.04.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper, mainly concerns the adaptive projective reduce order synchronization behavior of uncertain chaotic system. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of two chaotic and hyperchaotic systems asymptotically synchronized up to a desired identical and different scaling matrix. Numerical simulation results show that the proposed method is effective, convenient, and also faster for projective dual synchronization of chaotic and hyperchaotic systems. (C) 2017 All rights reserved.
引用
收藏
页码:2103 / 2114
页数:12
相关论文
共 50 条
  • [11] Function projective synchronization for fractional-order chaotic systems
    Zhou, Ping
    Zhu, Wei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) : 811 - 816
  • [12] Projective synchronization in fractional order chaotic systems and its control
    Li, CG
    PROGRESS OF THEORETICAL PHYSICS, 2006, 115 (03): : 661 - 666
  • [13] Synchronization for fractional order chaotic systems with uncertain parameters
    Qiao Wang
    Dong-Lian Qi
    International Journal of Control, Automation and Systems, 2016, 14 : 211 - 216
  • [14] Synchronization for Fractional Order Chaotic Systems with Uncertain Parameters
    Wang, Qiao
    Qi, Dong-Lian
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2016, 14 (01) : 211 - 216
  • [15] Modify adaptive combined synchronization of fractional order chaotic systems with fully unknown parameters
    Almatroud, A. Othman
    Ababneh, O.
    Al-sawalha, M. Mossa
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 21 (02): : 99 - 112
  • [16] Observer based Projective Reduced-order Synchronization of Different Chaotic Systems with Unknown Parameters
    Li Guan-Lin
    Chen Xi-You
    Liu Feng-Chun
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 753 - 756
  • [17] Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems
    周平
    曹玉霞
    Chinese Physics B, 2010, 19 (10) : 167 - 170
  • [18] Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems
    Zhou Ping
    Cao Yu-Xia
    CHINESE PHYSICS B, 2010, 19 (10)
  • [19] Dislocated projective synchronization between fractional-order chaotic systems and integer-order chaotic systems
    Zhang, Xiao-Qing
    Xiao, Jian
    Zhang, Qing
    OPTIK, 2017, 130 : 1139 - 1150
  • [20] A New Scheme to Projective Synchronization of Fractional-Order Chaotic Systems
    Wang Jun-Wei
    Chen Ai-Min
    CHINESE PHYSICS LETTERS, 2010, 27 (11)