Using fuzzy logic to tune an evolutionary algorithm for dynamic optimization of chemical processes

被引:10
|
作者
Pham, Q. T. [1 ]
机构
[1] Univ New S Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
关键词
Evolutionary algorithm; Parameter setting; Process control; Fuzzy logic; Evolutionary optimization; Dynamic optimization; PARAMETERS;
D O I
10.1016/j.compchemeng.2011.08.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dynamic optimization of chemical processes can be carried out with evolutionary algorithms that involve many parameters. These parameters need to be given appropriate values for the algorithms to perform efficiently. This paper proposes parameter setting methods based on factorial experimentation and fuzzy logic, aimed at balancing convergence speed, robustness (consistent performance for each problem) and versatility (applicability to many different problems). The methods were tested on an existing dynamic optimisation method with at least nine tuneable parameters. The test problem set turned out to be quite demanding due to one particular problem behaving in opposite direction to the rest with respect to the most influential factor, population size. It is probable that no single tuning would be possible that will satisfy all problems. However, for the other problems, the Fuzzy Logic tuning method proposed in this paper proves to be a very promising approach. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:136 / 142
页数:7
相关论文
共 50 条
  • [31] USING FUZZY LOGIC CONTROLLER AND EVOLUTIONARY GENETIC ALGORITHM FOR AUTOMOTIVE ACTIVE SUSPENSION SYSTEM
    Chiou, J. -S.
    Liu, M. -T.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2009, 10 (06) : 703 - 710
  • [32] Using fuzzy logic controller and evolutionary genetic algorithm for automotive active suspension system
    J. -S. Chiou
    M. -T. Liu
    International Journal of Automotive Technology, 2009, 10 : 703 - 710
  • [33] Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms
    Castillo, O.
    Melin, P.
    Alanis, A.
    Montiel, O.
    Sepulveda, R.
    SOFT COMPUTING, 2011, 15 (06) : 1145 - 1160
  • [34] Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms
    O. Castillo
    P. Melin
    A. Alanis
    O. Montiel
    R. Sepulveda
    Soft Computing, 2011, 15 : 1145 - 1160
  • [35] Proposal and optimization of a fuzzy logic model for automobile injection diagnosis using evolutionary algorithms
    Gonzalez Pinzon, Cesar Leonardo
    Espitia Cuchango, Helbert Eduardo
    Ponce Corral, Carlos
    Romero Gonzalez, Jaime
    2013 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONICS AND AUTOMOTIVE ENGINEERING (ICMEAE 2013), 2013, : 96 - 102
  • [36] Software requirement optimization using a fuzzy artificial chemical reaction optimization algorithm
    Alrezaamiri, Hamidreza
    Ebrahimnejad, Ali
    Motameni, Homayun
    SOFT COMPUTING, 2019, 23 (20) : 9979 - 9994
  • [37] Software requirement optimization using a fuzzy artificial chemical reaction optimization algorithm
    Hamidreza Alrezaamiri
    Ali Ebrahimnejad
    Homayun Motameni
    Soft Computing, 2019, 23 : 9979 - 9994
  • [38] Dynamic optimization in chemical processes using Region Reduction Strategy and Control Vector Parameterization with an Ant Colony Optimization algorithm
    Asgari, Sayyed Ali
    Pishvaie, Mahmoud Reza
    CHEMICAL ENGINEERING & TECHNOLOGY, 2008, 31 (04) : 507 - 512
  • [39] Optimization of Monitoring in Dynamic Communication Networks using a Hybrid Evolutionary Algorithm
    Mueller-Bady, Robin
    Kappes, Martin
    Medina-Bulo, Inmaculada
    Palomo-Lozano, Francisco
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 1200 - 1207
  • [40] ROBOT FINGERS TO TUNE TV AMPLIFIERS USING FUZZY-LOGIC
    ROSA, RG
    ZULIANI, PDF
    DEPEDRO, T
    FUZZY SETS AND SYSTEMS, 1995, 70 (2-3) : 147 - 153