Using fuzzy logic to tune an evolutionary algorithm for dynamic optimization of chemical processes

被引:10
|
作者
Pham, Q. T. [1 ]
机构
[1] Univ New S Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
关键词
Evolutionary algorithm; Parameter setting; Process control; Fuzzy logic; Evolutionary optimization; Dynamic optimization; PARAMETERS;
D O I
10.1016/j.compchemeng.2011.08.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dynamic optimization of chemical processes can be carried out with evolutionary algorithms that involve many parameters. These parameters need to be given appropriate values for the algorithms to perform efficiently. This paper proposes parameter setting methods based on factorial experimentation and fuzzy logic, aimed at balancing convergence speed, robustness (consistent performance for each problem) and versatility (applicability to many different problems). The methods were tested on an existing dynamic optimisation method with at least nine tuneable parameters. The test problem set turned out to be quite demanding due to one particular problem behaving in opposite direction to the rest with respect to the most influential factor, population size. It is probable that no single tuning would be possible that will satisfy all problems. However, for the other problems, the Fuzzy Logic tuning method proposed in this paper proves to be a very promising approach. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:136 / 142
页数:7
相关论文
共 50 条
  • [11] Fuzzy Dynamic Parameters Adaptation in the Cuckoo Search Algorithm using Fuzzy Logic
    Guerrero, Maribel
    Castillo, Oscar
    Garcia, Mario
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 441 - 448
  • [12] Dynamic optimization in chemical processes using improved knowledge-based cultural algorithm
    Liu, Zongqi
    Du, Wenli
    Qi, Rongbin
    Qian, Feng
    Huagong Xuebao/CIESC Journal, 2010, 61 (11): : 2889 - 2895
  • [13] Static and dynamic path optimization of multiple mobile robot using hybridized fuzzy logic-whale optimization algorithm
    Kumar, Saroj
    Parhi, Dayal R.
    Kashyap, Abhishek K.
    Muni, Manoj K.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (21) : 5718 - 5735
  • [14] Imperialist competitive algorithm with dynamic parameter adaptation using fuzzy logic applied to the optimization of mathematical functions
    Bernal E.
    Castillo O.
    Soria J.
    Valdez F.
    Castillo, Oscar (ocastillo@tectijuana.mx), 1600, MDPI AG (10):
  • [15] Dynamic Multiobjective Optimization Using Evolutionary Algorithm with Kalman Filter
    Muruganantham, Arrchana
    Zhao, Yang
    Gee, Sen Bong
    Qiu, Xin
    Tan, Kay Chen
    17TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, IES2013, 2013, 24 : 66 - 75
  • [16] A New Fuzzy Harmony Search Algorithm Using Fuzzy Logic for Dynamic Parameter Adaptation
    Peraza, Cinthia
    Valdez, Fevrier
    Garcia, Mario
    Melin, Patricia
    Castillo, Oscar
    ALGORITHMS, 2016, 9 (04)
  • [17] Optimization of Fuzzy Logic Controller for Trajectory Tracking Using Genetic Algorithm
    Shill, Pintu Chandra
    Akhand, M. A. H.
    Amin, Md Faijul
    Murase, Kazuyuki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2011, 15 (06) : 639 - 651
  • [18] Cloud Service Composition using Firefly Optimization Algorithm and Fuzzy Logic
    Wang, Wenzhi
    Liu, Zhanqiao
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (03) : 712 - 724
  • [19] Constraining the optimization of a fuzzy logic controller using an enhanced genetic algorithm
    Cheong, F
    Lai, R
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2000, 30 (01): : 31 - 46
  • [20] Association rule mining using fuzzy logic and whale optimization algorithm
    Sharmila, S.
    Vijayarani, S.
    SOFT COMPUTING, 2021, 25 (02) : 1431 - 1446