Water Wave Animation via Wavefront Parameter Interpolation

被引:33
|
作者
Jeschke, Stefan [1 ]
Wojtan, Chris [1 ]
机构
[1] IST Austria, A-3400 Klosterneuburg, Austria
来源
ACM TRANSACTIONS ON GRAPHICS | 2015年 / 34卷 / 03期
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
Algorithms; Performance; Ocean simulation; wavefront tracking; liquid animation; computational fluid dynamics; MODEL;
D O I
10.1145/2714572
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present an efficient wavefront tracking algorithm for animating bodies of water that interact with their environment. Our contributions include: a novel wavefront tracking technique that enables dispersion, refraction, reflection, and diffraction in the same simulation; a unique multivalued function interpolation method that enables our simulations to elegantly sidestep the Nyquist limit; a dispersion approximation for efficiently amplifying the number of simulated waves by several orders of magnitude; and additional extensions that allow for time-dependent effects and interactive artistic editing of the resulting animation. Our contributions combine to give us multitudes more wave details than similar algorithms, while maintaining high frame rates and allowing close camera zooms.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Fundamental Solutions for Water Wave Animation
    Schreck, Camille
    Hafner, Christian
    Wojtan, Chris
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (04):
  • [2] Water-wave animation on mesh surfaces
    Liu, Shengjun
    Jin, Xiaogang
    Wang, Charlie C. L.
    Chen, Jim X.
    COMPUTING IN SCIENCE & ENGINEERING, 2006, 8 (05) : 81 - 87
  • [3] Wavefront modulation of water surface wave by a metasurface
    孙海涛
    程营
    王敬时
    刘晓峻
    Chinese Physics B, 2015, 24 (10) : 296 - 300
  • [4] Wavefront modulation of water surface wave by a metasurface
    Sun Hai-Tao
    Cheng Ying
    Wang Jing-Shi
    Liu Xiao-Jun
    CHINESE PHYSICS B, 2015, 24 (10)
  • [5] Interpolation algorithms in wavefront construction
    Han, Fuxing
    Sun, Jianguo
    Yang, Hao
    Jisuan Wuli/Chinese Journal of Computational Physics, 2008, 25 (02): : 197 - 202
  • [6] Water Animation Using Coupled SPH and Wave Equation
    Ramakrishnan, Varun
    McGraw, Tim
    ADVANCES IN VISUAL COMPUTING, ISVC 2023, PT I, 2023, 14361 : 303 - 314
  • [7] Fast water animation using the wave equation with damping
    Nishidate, Y
    Nikishkov, GP
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 232 - 239
  • [8] State and parameter identification of linearized water wave equation via adjoint method
    Yu, Yang
    Xu, Cheng-Zhong
    Pei, Hai-Long
    Yu, Jinpeng
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (10)
  • [9] State and parameter identification of linearized water wave equation via adjoint method
    Yang YU
    ChengZhong XU
    HaiLong PEI
    Jinpeng YU
    Science China(Information Sciences), 2024, 67 (10) : 283 - 297
  • [10] INTERPOLATION OF MOLECULAR WAVE-FUNCTIONS WITH A VARIABLE GEOMETRICAL PARAMETER
    MONTAGNANI, R
    RIANI, P
    SALVETTI, O
    JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (12): : 6425 - 6426