State and parameter identification of linearized water wave equation via adjoint method

被引:0
|
作者
Yu, Yang [1 ]
Xu, Cheng-Zhong [2 ]
Pei, Hai-Long [3 ]
Yu, Jinpeng [1 ]
机构
[1] Qingdao Univ, Sch Automat, Qingdao 266071, Peoples R China
[2] Univ Claude Bernard, LAGEP, Batiment CPE, Lyon 1, F-69622 Villeurbanne, France
[3] South China Univ Technol, Key Lab Autonomous Syst & Networked Control, Unmanned Aerial Vehicle Syst, Minist Educ,Sch Automat Sci & Engn,Guangdong Engn, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
linearized water wave equation (LWWE); point observation; state estimation; parameter identification; adjoint method; numerical simulation; BOUNDARY CONTROL; STABILIZATION; DESIGN;
D O I
10.1007/s11432-023-4094-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we focus on the state and parameter identification problem of a hydrodynamical system. This system is modeled as a linearized water wave equation (LWWE), a hyperbolic state-space model coupled with a Laplace equation. We assume that the wave elevation at two distinct points is the only measurement of water waves. We show that the state and water depth can be reconstructed from this point measurement records. The identification problem is recast as an optimization problem over an infinite-dimensional space. We propose the adjoint method-based identification algorithm to generate an estimated state and water depth. We then performed a numerical simulation to show the effectiveness of our designed algorithm by comparing it with existing studies.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] State and parameter identification of linearized water wave equation via adjoint method
    Yang YU
    ChengZhong XU
    HaiLong PEI
    Jinpeng YU
    Science China(Information Sciences), 2024, 67 (10) : 283 - 297
  • [2] Adjoint state method for fractional diffusion: Parameter identification
    Maryshev, B.
    Cartalade, A.
    Latrille, C.
    Joelson, M.
    Neel, M. C.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) : 630 - 638
  • [3] Parameter identification method for determination of elastic modulus of rock based on adjoint equation and blasting wave measurements
    Koizumi, Naoto
    Kawahara, Mutsuto
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2009, 33 (12) : 1513 - 1533
  • [4] Adjoint lattice Boltzmann equation for parameter identification
    Tekitek, M. M.
    Bouzidi, M.
    Dubois, F.
    Lallemand, P.
    COMPUTERS & FLUIDS, 2006, 35 (8-9) : 805 - 813
  • [5] Comparison of sensitivity equation and adjoint equation methods for parameter identification problems
    Anju, A
    Kawahara, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1997, 40 (06) : 1015 - 1024
  • [6] Automatic parameter identification via the adjoint method, with application to understanding planar cell polarity
    Raffard, Robin
    Amonlirdviman, Keith
    Axelrod, Jeffrey D.
    Tomlin, Claire J.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 13 - 13
  • [7] The discrete adjoint method for parameter identification in multibody system dynamics
    Thomas Lauß
    Stefan Oberpeilsteiner
    Wolfgang Steiner
    Karin Nachbagauer
    Multibody System Dynamics, 2018, 42 : 397 - 410
  • [8] The discrete adjoint method for parameter identification in multibody system dynamics
    Lauss, Thomas
    Oberpeilsteiner, Stefan
    Steiner, Wolfgang
    Nachbagauer, Karin
    MULTIBODY SYSTEM DYNAMICS, 2018, 42 (04) : 397 - 410
  • [9] Second-order adjoint equation method for parameter identification of rock based on blast waves in tunnel excavation
    Motoyama, Yuto
    Mikame, Shigenori
    Nojima, Kazuya
    Kawahara, Mutsuto
    ENGINEERING OPTIMIZATION, 2014, 46 (07) : 939 - 963
  • [10] First arrival tomography with finite frequency adjoint-state method based on acoustic wave equation
    Xie, Chun
    Liu, Yuzhu
    Dong, Liangguo
    Yang, Jizhong
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2015, 50 (02): : 274 - 282