Adjoint lattice Boltzmann equation for parameter identification

被引:39
|
作者
Tekitek, M. M.
Bouzidi, M.
Dubois, F.
Lallemand, P.
机构
[1] Univ Paris 11, Lab ASCI, F-91405 Orsay, France
[2] Univ Paris 11, Math Lab, F-91405 Orsay, France
[3] Univ Clermont Ferrand, F-03107 Montlucon, France
[4] Conservatoire Natl Arts & Metiers, F-75141 Paris, France
关键词
D O I
10.1016/j.compfluid.2005.07.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The lattice Boltzmann equation is briefly introduced using moments to clearly separate the propagation and collision steps in the dynamics. In order to identify unknown parameters we introduce a cost function and adapt control theory to the lattice Boltzmann equation to get expressions for the derivatives of the cost function vs. parameters. This leads to an equivalent of the adjoint method with the definition of an adjoint lattice Boltzmann equation. To verify the general expressions for the derivatives, we consider two elementary situations: a linearized Poiseuille flow to show that the method can be used to optimize parameters, and a nonlinear situation in which a transverse shear wave is advected by a mean uniform flow. We indicate in the conclusion how the method can be used for more realistic situations. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:805 / 813
页数:9
相关论文
共 50 条
  • [1] Comparison of sensitivity equation and adjoint equation methods for parameter identification problems
    Anju, A
    Kawahara, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1997, 40 (06) : 1015 - 1024
  • [2] Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation
    He, XY
    Luo, LS
    PHYSICAL REVIEW E, 1997, 56 (06): : 6811 - 6817
  • [3] Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization
    Pingen, Georg
    Evgrafov, Anton
    Maute, Kurt
    COMPUTERS & FLUIDS, 2009, 38 (04) : 910 - 923
  • [4] Solving fluid flow domain identification problems with adjoint lattice Boltzmann methods
    Klemens, Fabian
    Foerster, Benjamin
    Dorn, Marcio
    Thaeter, Gudrun
    Krause, Mathias J.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (01) : 17 - 33
  • [5] A lattice Boltzmann equation for waves
    Yan, GW
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 161 (01) : 61 - 69
  • [6] Lattice Boltzmann equation hydrodynamics
    Halliday, I.
    Hammond, L.A.
    Care, C.M.
    Good, K.
    Stevens, A.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (1 I): : 1 - 011208
  • [7] Lattice Boltzmann equation hydrodynamics
    Halliday, I
    Hammond, LA
    Care, CM
    Good, K
    Stevens, A
    PHYSICAL REVIEW E, 2001, 64 (01):
  • [8] Exact Lattice Boltzmann Equation
    Boesch, F.
    Karlin, I. V.
    PHYSICAL REVIEW LETTERS, 2013, 111 (09)
  • [9] Theory of the lattice Boltzmann equation: Lattice Boltzmann model for axisymmetric flows
    Guo, Zhaoli
    Han, Haifeng
    Shi, Baochang
    Zheng, Chuguang
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [10] State and parameter identification of linearized water wave equation via adjoint method
    Yang YU
    ChengZhong XU
    HaiLong PEI
    Jinpeng YU
    Science China(Information Sciences), 2024, 67 (10) : 283 - 297