Solving fluid flow domain identification problems with adjoint lattice Boltzmann methods

被引:6
|
作者
Klemens, Fabian [1 ]
Foerster, Benjamin [1 ]
Dorn, Marcio [3 ]
Thaeter, Gudrun [1 ]
Krause, Mathias J. [1 ,2 ]
机构
[1] KIT, IANM, D-76131 Karlsruhe, Germany
[2] KIT, Inst Mech Proc Engn & Mech MVM, D-76131 Karlsruhe, Germany
[3] Fed Univ Rio Grande do Sul UFRGS, Inst Informat INF, Av Bento Gonalves 9500, Porto Alegre, RS, Brazil
关键词
Optimisation; Adjoint LBM; LBM; Porous media model; Fluid flow control; Domain identification; TOPOLOGY OPTIMIZATION; SENSITIVITY-ANALYSIS;
D O I
10.1016/j.camwa.2018.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the adjoint lattice Boltzmann method (ALBM) for solving fluid domain identification problems for incompressible fluids, proposed by Krause et al. (2016), is improved and validated. The problem is formulated as a distributed control problem which minimises the distance between a given, e.g. from measurements like MRI, and a simulated flow field. Thereby, the simulated flow field is the solution of a parametrised porous media BGK-Boltzmann problem, where the parameters represent porosity distributed in the domain. The proposed parametrisation consists of linking the variables representing a lattice-dependent porosity with the control variables. Hereby, it is paid attention that a given control parameter set yields results which are independent of the underlying grid resolution. It enables solving an optimisation problem with different resolutions without adapting the initial set of control variables. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 50 条
  • [1] Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods
    Krause, Mathias J.
    Thaeter, Gudrun
    Heuveline, Vincent
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (06) : 945 - 960
  • [2] HYBRID LATTICE BOLTZMANN AND FINITE VOLUME METHODS FOR FLUID FLOW PROBLEMS
    Li, Zheng
    Yang, Mo
    Zhan, Yuwen
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2014, 12 (03) : 177 - 192
  • [3] Adjoint lattice Boltzmann equation for parameter identification
    Tekitek, M. M.
    Bouzidi, M.
    Dubois, F.
    Lallemand, P.
    COMPUTERS & FLUIDS, 2006, 35 (8-9) : 805 - 813
  • [4] Pattern recognition of the fluid flow in a 3D domain by combination of Lattice Boltzmann and ANFIS methods
    Meisam Babanezhad
    Ali Taghvaie Nakhjiri
    Azam Marjani
    Saeed Shirazian
    Scientific Reports, 10
  • [5] Pattern recognition of the fluid flow in a 3D domain by combination of Lattice Boltzmann and ANFIS methods
    Babanezhad, Meisam
    Nakhjiri, Ali Taghvaie
    Marjani, Azam
    Shirazian, Saeed
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Application of Lattice Boltzmann Method for fluid flow modelling of FSLDR domain
    Bhatt, Tirthraj
    Perumal, D. Arumuga
    MATERIALS TODAY-PROCEEDINGS, 2020, 22 : 2066 - 2073
  • [7] A novel solution for fluid flow problems based on the lattice Boltzmann method
    Wongcharoen, Athasit
    Huang, Chung-Neng
    MOLECULAR SIMULATION, 2014, 40 (13) : 1043 - 1051
  • [8] A nodal discontinuous Galerkin lattice Boltzmann method for fluid flow problems
    Zadehgol, A.
    Ashrafizaadeh, M.
    Musavi, S. H.
    COMPUTERS & FLUIDS, 2014, 105 : 58 - 65
  • [9] BINARY FLUID FLOW SIMULATIONS WITH FREE ENERGY LATTICE BOLTZMANN METHODS
    Simonis, Stephan
    Nguyen, Johannes
    Avis, Samuel J.
    Doerfler, Willy
    Krause, Mathias J.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (11): : 3278 - 3294
  • [10] BINARY FLUID FLOW SIMULATIONS WITH FREE ENERGY LATTICE BOLTZMANN METHODS
    Simonis, Stephan
    Nguyen, Johannes
    Avis, Samuel J.
    Doerfler, Willy
    Krause, Mathias J.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (11): : 3278 - 3294