Solving fluid flow domain identification problems with adjoint lattice Boltzmann methods

被引:6
|
作者
Klemens, Fabian [1 ]
Foerster, Benjamin [1 ]
Dorn, Marcio [3 ]
Thaeter, Gudrun [1 ]
Krause, Mathias J. [1 ,2 ]
机构
[1] KIT, IANM, D-76131 Karlsruhe, Germany
[2] KIT, Inst Mech Proc Engn & Mech MVM, D-76131 Karlsruhe, Germany
[3] Fed Univ Rio Grande do Sul UFRGS, Inst Informat INF, Av Bento Gonalves 9500, Porto Alegre, RS, Brazil
关键词
Optimisation; Adjoint LBM; LBM; Porous media model; Fluid flow control; Domain identification; TOPOLOGY OPTIMIZATION; SENSITIVITY-ANALYSIS;
D O I
10.1016/j.camwa.2018.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the adjoint lattice Boltzmann method (ALBM) for solving fluid domain identification problems for incompressible fluids, proposed by Krause et al. (2016), is improved and validated. The problem is formulated as a distributed control problem which minimises the distance between a given, e.g. from measurements like MRI, and a simulated flow field. Thereby, the simulated flow field is the solution of a parametrised porous media BGK-Boltzmann problem, where the parameters represent porosity distributed in the domain. The proposed parametrisation consists of linking the variables representing a lattice-dependent porosity with the control variables. Hereby, it is paid attention that a given control parameter set yields results which are independent of the underlying grid resolution. It enables solving an optimisation problem with different resolutions without adapting the initial set of control variables. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 50 条
  • [21] Application and accuracy issues of TRT lattice Boltzmann method for solving elliptic PDEs commonly encountered in heat transfer and fluid flow problems
    Demuth, Cornelius
    Mishra, Shekhar
    Mendes, Miguel A. A.
    Ray, Subhashis
    Trimis, Dimosthenis
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 100 : 185 - 201
  • [22] Simulation of nasal flow by lattice Boltzmann methods
    Finck, M.
    Haenel, D.
    Wlokas, I.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (06) : 739 - 749
  • [23] Flow prediction by lattice-Boltzmann methods
    Filippova, O
    Hänel, D
    COMPUTATIONAL FLUID DYNAMICS 2000, 2001, : 523 - 528
  • [24] Hybrid model of lattice Boltzmann and CLSVOF methods for immiscible two-fluid flow
    Kaneda, Masayuki
    Ueda, Takehiro
    Suga, Kazuhiko
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2013, 13 (3-4): : 152 - 161
  • [25] Applying the lattice Boltzmann equation to multiscale fluid problems
    Succi, S
    Filippova, O
    Smith, G
    Kaxiras, E
    COMPUTING IN SCIENCE & ENGINEERING, 2001, 3 (06) : 26 - 37
  • [26] Topology optimization of fluid problems by the lattice Boltzmann method
    Evgrafov, Anton
    Pingen, Georg
    Maute, Kurt
    IUTAM SYMPOSIUM ON TOPOLOGICAL DESIGN OPTIMIZATION OF STRUCTURES, MACHINES AND MATERIALS: STATUS AND PERSPECTIVES, 2006, 137 : 559 - +
  • [27] Domain decomposition methods for fluid flow problems by the boundary domain integral method
    Hribersek, M
    Skerget, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 425 - 426
  • [28] Lattice Boltzmann simulation of fluid flow in synthetic fractures
    Eker, Erdinc
    Akin, Serhat
    TRANSPORT IN POROUS MEDIA, 2006, 65 (03) : 363 - 384
  • [29] Lattice Boltzmann modeling for multiphase viscoplastic fluid flow
    Xie, Chiyu
    Zhang, Jianying
    Bertola, Volfango
    Wang, Moran
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2016, 234 : 118 - 128
  • [30] Lattice Boltzmann Simulation of Fluid Flow in Synthetic Fractures
    Erdinc Eker
    Serhat Akin
    Transport in Porous Media, 2006, 65 : 363 - 384