Adjoint lattice Boltzmann equation for parameter identification

被引:39
|
作者
Tekitek, M. M.
Bouzidi, M.
Dubois, F.
Lallemand, P.
机构
[1] Univ Paris 11, Lab ASCI, F-91405 Orsay, France
[2] Univ Paris 11, Math Lab, F-91405 Orsay, France
[3] Univ Clermont Ferrand, F-03107 Montlucon, France
[4] Conservatoire Natl Arts & Metiers, F-75141 Paris, France
关键词
D O I
10.1016/j.compfluid.2005.07.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The lattice Boltzmann equation is briefly introduced using moments to clearly separate the propagation and collision steps in the dynamics. In order to identify unknown parameters we introduce a cost function and adapt control theory to the lattice Boltzmann equation to get expressions for the derivatives of the cost function vs. parameters. This leads to an equivalent of the adjoint method with the definition of an adjoint lattice Boltzmann equation. To verify the general expressions for the derivatives, we consider two elementary situations: a linearized Poiseuille flow to show that the method can be used to optimize parameters, and a nonlinear situation in which a transverse shear wave is advected by a mean uniform flow. We indicate in the conclusion how the method can be used for more realistic situations. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:805 / 813
页数:9
相关论文
共 50 条
  • [21] A priori derivation of the lattice Boltzmann equation
    He, XY
    Luo, LS
    PHYSICAL REVIEW E, 1997, 55 (06) : R6333 - R6336
  • [22] Asymptotic analysis of the lattice Boltzmann equation
    Junk, M
    Klar, A
    Luo, LS
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 210 (02) : 676 - 704
  • [23] A lattice Boltzmann method for KDV equation
    Yan Guangwu
    Chen Yaosong
    Hu Shouxin
    Acta Mechanica Sinica, 1998, 14 (1) : 18 - 26
  • [24] Properties of a multispeed lattice Boltzmann equation
    刘慕仁
    孔令江
    Science China Mathematics, 1996, (08) : 876 - 882
  • [25] Properties of a multispeed lattice Boltzmann equation
    Liu, MR
    Kong, LJ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1996, 39 (08): : 876 - 882
  • [26] Lattice Boltzmann approach to Richards' equation
    Ginzburg, I
    Carlier, JP
    Kao, C
    COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2, 2004, 55 : 583 - 595
  • [27] A LATTICE BOLTZMANN-EQUATION FOR DIFFUSION
    WOLFGLADROW, D
    JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (5-6) : 1023 - 1032
  • [28] A LATTICE BOLTZMANN METHOD FOR KDV EQUATION
    阎广武
    陈耀松
    胡守信
    Acta Mechanica Sinica, 1998, (01) : 18 - 26
  • [29] A lattice Boltzmann method for KDV equation
    Yan, GW
    Chen, YS
    Hu, SX
    ACTA MECHANICA SINICA, 1998, 14 (01) : 18 - 26
  • [30] Development of Discrete Adjoint Approach Based on the Lattice Boltzmann Method
    Hekmat, Mohamad Hamed
    Mirzaei, Masoud
    ADVANCES IN MECHANICAL ENGINEERING, 2014,