Wet-environment Evapotranspiration and Precipitation Standardized Index (WEPSI) for drought assessment and monitoring

被引:3
|
作者
Khoshnazar, Ali [1 ]
Perez, Gerald A. Corzo [1 ,2 ]
Mercado, Vitali Diaz [1 ,2 ]
Aminzadeh, Milad [3 ]
Pinedad, Roberto Adolfo Ceron [4 ]
机构
[1] IHE Delft Inst Water Educ, Delft, Netherlands
[2] Delft Univ Technol, Delft, Netherlands
[3] Hamburg Univ Technol, Inst Geo Hydroinformat, Hamburg, Germany
[4] Minist Environm & Nat Resources MARN, San Salvador, El Salvador
来源
HYDROLOGY RESEARCH | 2022年 / 53卷 / 11期
关键词
agricultural drought; drought analysis; drought assessment; drought index; drought monitoring; Lempa River basin; mutual information; WEAP; WEPSI; wet-environment evapotranspiration; COMPLEMENTARY RELATIONSHIP; CLIMATE-CHANGE; RIVER-BASIN; EVAPORATION; SEVERITY; AREA;
D O I
10.2166/nh.2022.062
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Drought assessment and monitoring are essential for its proper management. Drought indices play a fundamental role in this. This research introduces the Wet-environment Evapotranspiration and Precipitation Standardized Index (WEPSI) for drought assessment and monitoring. WEPSI incorporates water supply and demand into the drought index calculation. WEPSI considers precipitation (P) for water supply and wet-environment evapotranspiration (ETw) for water demand. We use an asymmetric complementary relationship to calculate ETw with actual (ETa) and potential evapotranspiration (ETp). WEPSI is tested in the transboundary Lempa River basin in the Central American dry corridor. ETw is estimated based on evapotranspiration data calculated using the Water Evaluation And Planning (WEAP) system hydrological model. To investigate the performance of WEPSI, we compare it with two well-known meteorological indices (Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index), together with a hydrological index (Standardized Runoff Index), in terms of statistical metrics and mutual information (MI). We compare WEPSI-derived droughts and historical information, including crop production, cereal yield, and the Oceanic Nino Index (ONI). Results show WEPSI has the highest correlation and MI, and the lowest deviation. It is consistent with the records of the crop production index, cereal yield, and the ONI. Findings show that WEPSI can be used for agricultural drought assessments.
引用
收藏
页码:1393 / 1413
页数:21
相关论文
共 50 条
  • [21] A drought index for Rainfed agriculture: The Standardized Precipitation Crop Evapotranspiration Index (SPCEI)
    Pei, Wei
    Fu, Qiang
    Liu, Dong
    Li, Tianxiao
    HYDROLOGICAL PROCESSES, 2019, 33 (05) : 803 - 815
  • [22] A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index
    Vicente-Serrano, Sergio M.
    Begueria, Santiago
    Lopez-Moreno, Juan I.
    JOURNAL OF CLIMATE, 2010, 23 (07) : 1696 - 1718
  • [23] A SENSITIVITY STUDY OF APPLYING A TWO-SOURCE POTENTIAL EVAPOTRANSPIRATION MODEL IN THE STANDARDIZED PRECIPITATION EVAPOTRANSPIRATION INDEX FOR DROUGHT MONITORING
    Zhang, Baoqing
    Wang, Zikui
    Chen, Guan
    LAND DEGRADATION & DEVELOPMENT, 2017, 28 (02) : 783 - 793
  • [24] Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China
    Liu, Changhong
    Yang, Cuiping
    Yang, Qi
    Wang, Jiao
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [25] Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China
    Changhong Liu
    Cuiping Yang
    Qi Yang
    Jiao Wang
    Scientific Reports, 11
  • [26] Weighing temporal fluctuations of drought features in Rwanda through the implementation of the standardized precipitation evapotranspiration index and standardized precipitation index
    Jonah, Kazora
    Zhu, Weijun
    Oo Than, Kyaw
    Asfaw, Temesgen Gebremariam
    Kedjanyi, Emmanuel Adu Gyamfi
    Okrah, Abraham
    Diane, Akimana
    Mugunga, Mathieu Mbati
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2025, 7 (01):
  • [27] Spatiotemporal variability assessment and accuracy evaluation of Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index in Malaysia
    Tan, Yi Xun
    Ng, Jing Lin
    Huang, Yuk Feng
    EARTH SCIENCE INFORMATICS, 2023, 16 (01) : 67 - 89
  • [28] The Use of a High-Resolution Standardized Precipitation Index for Drought Monitoring and Assessment
    McRoberts, D. Brent
    Nielsen-Gammon, John W.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2012, 51 (01) : 68 - 83
  • [29] Spatiotemporal variability assessment and accuracy evaluation of Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index in Malaysia
    Yi Xun Tan
    Jing Lin Ng
    Yuk Feng Huang
    Earth Science Informatics, 2023, 16 : 67 - 89
  • [30] Application of standardized precipitation index for monitoring meteorological drought and wet conditions in Garhwal region (Uttarakhand)
    Malik A.
    Kumar A.
    Arabian Journal of Geosciences, 2021, 14 (9)