Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China

被引:0
|
作者
Changhong Liu
Cuiping Yang
Qi Yang
Jiao Wang
机构
[1] Southwest Forestry University,Institute of Environment Remediation and Human Health
[2] Southwest Forestry University,College of Ecology and Environment
[3] Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Drought refers to a meteorological disaster that causes insufficient soil moisture and damage to crop water balance due to long-term lack of precipitation. With the increasing shortage of water resources, drought has become one of the hot issues of global concern. The standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) can effectively reflect the changes in drought characteristics of different geomorphologies in Sichuan on time and space scales, to explore the difference in drought characteristics between different physiognomy types in Sichuan Province, We calculated the SPI and SPEI values based on the data of 44 meteorological stations in Sichuan Province from 1961 to 2019 and used Mann–Kendall trend test and multivariable linear regression method (MLR) to quantify the significance of the drought characteristic trends at different time and space scales. The results as follow: (1) The SPEI drought trend in plain and hilly regions was greater than that in plateau and mountain regions on all time scales (− 0.039 year−1 for 1-month in hilly, − 0.035 year−1 for 1-month in plain, − 0.14 year−1 for 1-month in plateau, − 0.026 year−1 for 1-month in mountain) and the magnitude of trend of eastern (− 4.4 to 0.1 year−1) was lager than western (− 2.1 to 2.7 year−1), means that the drought trends transfer from northwest to east. (2) The drought intensity in the western region gradually increased (0.54–1.05) and drought events mainly occurred in the southwest plateau and central mountainous regions (24–47 times), means that drought meteorological hotspots were mainly concentrated in the Sichuan basin. (3) The MLR indicated altitude (H) is not the main influencing factor that causes the spatial unevenness of precipitation in Sichuan Province, but altitude (H), temperature (T), longitude (Lo) and latitude (La) can co-determined the precipitation. The results of this study are instructive and practical for drought assessment, risk management and application decision-making in Sichuan Province, and have guiding significance for agricultural disaster prevention, mitigation and agricultural irrigation in Sichuan Province.
引用
收藏
相关论文
共 50 条
  • [1] Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China
    Liu, Changhong
    Yang, Cuiping
    Yang, Qi
    Wang, Jiao
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Spatiotemporal drought analysis in Bangladesh using the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI)
    Mohammad Kamruzzaman
    Mansour Almazroui
    M. A. Salam
    Md Anarul Haque Mondol
    Md. Mizanur Rahman
    Limon Deb
    Palash Kumar Kundu
    Md. Asad Uz Zaman
    Abu Reza Md. Towfiqul Islam
    Scientific Reports, 12
  • [3] Spatiotemporal drought analysis in Bangladesh using the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI)
    Kamruzzaman, Mohammad
    Almazroui, Mansour
    Salam, M. A.
    Mondol, Md Anarul Haque
    Rahman, Md Mizanur
    Deb, Limon
    Kundu, Palash Kumar
    Zaman, Md Asad Uz
    Islam, Abu Reza Md Towfiqul
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Modified Standardized Precipitation Evapotranspiration Index: spatiotemporal analysis of drought
    Habeeb, Rimsha
    Almazah, Mohammed M. A.
    Hussain, Ijaz
    Al-Ansari, Nadhir
    Al-Rezami, A. Y.
    Sammen, Saad Sh.
    GEOMATICS NATURAL HAZARDS & RISK, 2023, 14 (01)
  • [5] Drought Analysis Based on Standardized Precipitation Evapotranspiration Index and Standardized Precipitation Index in Sarawak, Malaysia
    Isia, Ismallianto
    Hadibarata, Tony
    Jusoh, Muhammad Noor Hazwan
    Bhattacharjya, Rajib Kumar
    Shahedan, Noor Fifinatasha
    Bouaissi, Aissa
    Fitriyani, Norma Latif
    Syafrudin, Muhammad
    SUSTAINABILITY, 2023, 15 (01)
  • [6] Drought monitoring and analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI)
    Tirivarombo, S.
    Osupile, D.
    Eliasson, P.
    PHYSICS AND CHEMISTRY OF THE EARTH, 2018, 106 : 1 - 10
  • [7] Drought Analysis Using the Standardized Precipitation Index (SPI)
    Sebenik, Ursa
    Brilly, Mitja
    Sraj, Mojca
    ACTA GEOGRAPHICA SLOVENICA-GEOGRAFSKI ZBORNIK, 2017, 57 (01) : 32 - 43
  • [8] Spatiotemporal evolution analysis and prediction of drought in Henan Province based on standardized precipitation evapotranspiration index
    Luo, Dang
    Li, Liangshuai
    WATER SUPPLY, 2023, 23 (01) : 410 - 427
  • [9] The Trends of the Standardized Precipitation and Evapotranspiration Index (SPEI) in Turkey
    R. Jamal
    S. J. Hadi
    M. Tombul
    Geography and Natural Resources, 2022, 43 : 87 - 95
  • [10] The Trends of the Standardized Precipitation and Evapotranspiration Index (SPEI) in Turkey
    Jamal, R.
    Hadi, S. J.
    Tombul, M.
    GEOGRAPHY AND NATURAL RESOURCES, 2022, 43 (01) : 87 - 95