Cryogenic Transport Characteristics of P-Type Gate-All-Around Silicon Nanowire MOSFETs

被引:17
|
作者
Gu, Jie [1 ,2 ]
Zhang, Qingzhu [1 ]
Wu, Zhenhua [1 ,2 ]
Yao, Jiaxin [1 ,2 ]
Zhang, Zhaohao [1 ]
Zhu, Xiaohui [1 ,2 ]
Wang, Guilei [1 ]
Li, Junjie [1 ,2 ]
Zhang, Yongkui [1 ]
Cai, Yuwei [1 ,2 ]
Xu, Renren [1 ,2 ]
Xu, Gaobo [1 ,2 ]
Xu, Qiuxia [1 ]
Yin, Huaxiang [1 ,2 ]
Luo, Jun [1 ,2 ]
Wang, Wenwu [1 ,2 ]
Ye, Tianchun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Microelect, Key Lab Microelect Devices & Integrated Technol, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
关键词
gate-all-around; Si nanowire; cryo-CMOS; one-dimensional hole transport;
D O I
10.3390/nano11020309
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A 16-nm-L-g p-type Gate-all-around (GAA) silicon nanowire (Si NW) metal oxide semiconductor field effect transistor (MOSFET) was fabricated based on the mainstream bulk fin field-effect transistor (FinFET) technology. The temperature dependence of electrical characteristics for normal MOSFET as well as the quantum transport at cryogenic has been investigated systematically. We demonstrate a good gate-control ability and body effect immunity at cryogenic for the GAA Si NW MOSFETs and observe the transport of two-fold degenerate hole sub-bands in the nanowire (110) channel direction sub-band structure experimentally. In addition, the pronounced ballistic transport characteristics were demonstrated in the GAA Si NW MOSFET. Due to the existence of spacers for the typical MOSFET, the quantum interference was also successfully achieved at lower bias.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [41] Predictive 3-D Modeling of Parasitic Gate Capacitance in Gate-all-Around Cylindrical Silicon Nanowire MOSFETs
    Zou, Jibin
    Xu, Qiumin
    Luo, Jieying
    Wang, Runsheng
    Huang, Ru
    Wang, Yangyuan
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (10) : 3379 - 3387
  • [42] Sensitivity of Gate-All-Around Nanowire MOSFETs to Process Variations-A Comparison With Multigate MOSFETs
    Wu, Yu-Sheng
    Su, Pin
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (11) : 3042 - 3047
  • [43] InAs Nanowire Gate-All-Around MOSFETs by Heterogeneous Planar VLS Growth
    Zhang, Chen
    Choi, Wonsik
    Mohseni, Parsian
    Li, Xiuling
    2015 73RD ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2015, : 181 - 182
  • [44] InAs Gate-all-around Nanowire MOSFETs by Top-down Approach
    Wu, H.
    Lou, X. B.
    Si, M.
    Zhang, J. Y.
    Gordon, R. G.
    Tokranov, V.
    Oktyabrsky, S.
    Ye, P. D.
    2014 72ND ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2014, : 213 - +
  • [45] Potential and Quantum Threshold Voltage Modeling of Gate-All-Around Nanowire MOSFETs
    Pandian, M.
    Balamurugan, N.
    Pricilla, A.
    ACTIVE AND PASSIVE ELECTRONIC COMPONENTS, 2013, 2013 (2013)
  • [46] Superior subthreshold characteristics of gate-all-around p-type junctionless poly-Si nanowire transistor with ideal subthreshold slope
    Ahn, Min-Ju
    Saraya, Takuya
    Kobayashi, Masaharu
    Sawamoto, Naomi
    Ogura, Atsushi
    Hiramoto, Toshiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (07)
  • [47] Variability characteristics and corner effects of gate-all-around (GAA) p-type poly-Si junctionless nanowire/nanosheet transistors
    Ahn, Min-Ju
    Saraya, Takuya
    Kobayashi, Masaharu
    Hiramoto, Toshiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2021, 60 (SB)
  • [48] Electrical Characteristics of In0.5Ga0.47As Gate-All-Around MOSFETs With Different Nanowire Shapes
    Ko, Hua-Lun
    Quang Ho Luc
    Huang, Ping
    Chen, Si-Meng
    Wu, Jing-Yuan
    Nhan-Ai Tran
    Chang, Edward Yi
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (08) : 4183 - 4187
  • [49] CMOS-Compatible Gate-All-Around Silicon Nanowire detector
    Ziaei-Moayyed, Maryam
    Okandan, Murat
    2011 IEEE SENSORS, 2011, : 1608 - 1611
  • [50] Vertical silicon-nanowire formation and gate-all-around MOSFET
    Yang, B.
    Buddharaju, K. D.
    Teo, S. H. G.
    Singh, N.
    Lo, G. Q.
    Kwong, D. L.
    IEEE ELECTRON DEVICE LETTERS, 2008, 29 (07) : 791 - 794