Multi-soliton solutions of the Konopelchenko-Dubrovsky equation

被引:0
|
作者
Lin, J [1 ]
Lou, SY
Wang, KL
机构
[1] Shanghai Jiao Tong Univ, Dept Appl Phys, Shanghai 200030, Peoples R China
[2] Univ Sci & Technol China, Ctr Nonlinear Sci, Hefei 230026, Peoples R China
[3] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the standard truncated Painleve analysis, a Backlund transformation is used to obtain some new types of multi-soliton solutions of the (2+1)-dimensional integrable Konopelchenko-Dubrovsky equation from the trivial vacuum solution.
引用
收藏
页码:1173 / 1175
页数:3
相关论文
共 50 条
  • [41] Similarity solutions of the Konopelchenko-Dubrovsky system using Lie group theory
    Kumar, Mukesh
    Kumar, Anshu
    Kumar, Raj
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (10) : 2051 - 2059
  • [42] Konopelchenko-Dubrovsky方程的精确解
    张亚敏
    贵州大学学报(自然科学版), 2012, 29 (06) : 9 - 12
  • [43] Novel soliton molecules, asymmetric solitons, W-shape and the breather wave solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wang, Kang-Jia
    Shi, Feng
    Li, Shuai
    Xu, Peng
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (05):
  • [44] Soliton solutions, Backlund transformation and Wronskian solutions for the extended (2+1)-dimensional Konopelchenko-Dubrovsky equations in fluid mechanics
    Xu, Peng-Bo
    Gao, Yi-Tian
    Gai, Xiao-Ling
    Meng, De-Xin
    Shen, Yu-Jia
    Wang, Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2489 - 2496
  • [45] New exact solutions for the Konopelchenko-Dubrovsky equation using an extended Riccati equation rational expansion method and symbolic computation
    Song, Lina
    Zhang, Hongqing
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 1373 - 1388
  • [46] New multisoliton solutions for (2+1) dimensional Konopelchenko-Dubrovsky equations
    Ye Cai-Er
    Zhang Wei-Guo
    ACTA PHYSICA SINICA, 2010, 59 (08) : 5229 - 5234
  • [47] Novel multi-soliton solutions of the breaking soliton equation
    Zhang, JF
    Guo, GP
    ACTA PHYSICA SINICA, 2003, 52 (10) : 2359 - 2362
  • [48] Analytical solutions for the generalized (2+1)-dimensional Konopelchenko-Dubrovsky equation via Lie symmetry analysis
    Muduli, Tapan Kumar
    Satapathy, Purnima
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 465
  • [49] The multi-soliton solutions of the CH-γ equation
    ChunLi Chen
    YiShen Li
    JinE Zhang
    Science in China Series A: Mathematics, 2008, 51 : 314 - 320
  • [50] The multi-soliton solutions of the CH-γ equation
    CHEN ChunLi~(1+) LI YiShen~2 ZHANG JinE~3 1 Department of Mathematics
    2 Department of Mathematics
    3 SB and SEF
    ScienceinChina(SeriesA:Mathematics), 2008, (02) : 314 - 320