Multi-soliton solutions of the Konopelchenko-Dubrovsky equation

被引:0
|
作者
Lin, J [1 ]
Lou, SY
Wang, KL
机构
[1] Shanghai Jiao Tong Univ, Dept Appl Phys, Shanghai 200030, Peoples R China
[2] Univ Sci & Technol China, Ctr Nonlinear Sci, Hefei 230026, Peoples R China
[3] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the standard truncated Painleve analysis, a Backlund transformation is used to obtain some new types of multi-soliton solutions of the (2+1)-dimensional integrable Konopelchenko-Dubrovsky equation from the trivial vacuum solution.
引用
收藏
页码:1173 / 1175
页数:3
相关论文
共 50 条
  • [21] Symbolic computation and new families of exact soliton-like solutions of Konopelchenko-Dubrovsky equations
    Xia, TC
    Lü, ZS
    Zhang, HQ
    CHAOS SOLITONS & FRACTALS, 2004, 20 (03) : 561 - 566
  • [22] Dynamical and physical characteristics of soliton solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky system
    Alruwaili, Abdulmohsen D.
    Seadawy, Aly R.
    Ali, Asghar
    Aldandani, Mohammed M.
    OPEN PHYSICS, 2023, 21 (01):
  • [23] On group-invariant solutions of Konopelchenko-Dubrovsky equation by using Lie symmetry approach
    Kumar, Mukesh
    Tiwari, Atul Kumar
    NONLINEAR DYNAMICS, 2018, 94 (01) : 475 - 487
  • [24] Solitons, breathers and rational solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Dong, Min-Jie
    Tian, Li-Xin
    Shi, Wei
    Wei, Jing-Dong
    Wang, Yun
    NONLINEAR DYNAMICS, 2024, 112 (12) : 10259 - 10275
  • [25] New kinks and solitons solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wazwaz, Abdul-Majid
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (3-4) : 473 - 479
  • [26] Explicit and exact nontravelling wave solutions of Konopelchenko-Dubrovsky equations
    Zhang, Sheng
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2007, 62 (12): : 689 - 697
  • [27] Lie point symmetry and some new soliton-like solutions of the Konopelchenko-Dubrovsky equations
    Zhi Hongyan
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (02) : 931 - 936
  • [28] A generalized soliton solution of the Konopelchenko-Dubrovsky equation using He's exp-function method
    Xu, Fei
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2007, 62 (12): : 685 - 688
  • [29] New Exact Solutions for Konopelchenko-Dubrovsky Equation Using an Extended Riccati Equation Rational Expansion Method
    SONG Li-Nat and ZHANG Hong-Qing Department of Applied Mathematics
    Communications in Theoretical Physics, 2006, 45 (05) : 769 - 776
  • [30] Solutions to the Konopelchenko-Dubrovsky equation and the Landau-Ginzburg-Higgs equation via the generalized Kudryashov technique
    Barman, Hemonta Kumar
    Akbar, M. Ali
    Osman, M. S.
    Nisar, Kottakkaran Sooppy
    Zakarya, M.
    Abdel-Aty, Abdel-Haleem
    Eleuch, Hichem
    RESULTS IN PHYSICS, 2021, 24