Multi-soliton solutions of the Konopelchenko-Dubrovsky equation

被引:0
|
作者
Lin, J [1 ]
Lou, SY
Wang, KL
机构
[1] Shanghai Jiao Tong Univ, Dept Appl Phys, Shanghai 200030, Peoples R China
[2] Univ Sci & Technol China, Ctr Nonlinear Sci, Hefei 230026, Peoples R China
[3] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the standard truncated Painleve analysis, a Backlund transformation is used to obtain some new types of multi-soliton solutions of the (2+1)-dimensional integrable Konopelchenko-Dubrovsky equation from the trivial vacuum solution.
引用
收藏
页码:1173 / 1175
页数:3
相关论文
共 50 条
  • [1] Novel resonant soliton interactions for the Konopelchenko-Dubrovsky equation
    Yuan, Yu-Qiang
    Luo, Xiang
    Sun, Yan
    Liu, Lei
    PHYSICS LETTERS A, 2025, 537
  • [2] Periodic Wave Solutions for Konopelchenko-Dubrovsky Equation
    ZHANG Jin-liang
    Department of Mathematics
    Department of Finance
    数学季刊, 2005, (01) : 72 - 78
  • [3] Lump soliton wave solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation and KdV equation
    Khater, Mostafa M. A.
    Lu, Dianchen
    Attia, Raghda A. M.
    MODERN PHYSICS LETTERS B, 2019, 33 (18):
  • [4] Solutions of Jimbo-Miwa Equation and Konopelchenko-Dubrovsky Equations
    Cao, Bintao
    ACTA APPLICANDAE MATHEMATICAE, 2010, 112 (02) : 181 - 203
  • [5] Solutions of Jimbo-Miwa Equation and Konopelchenko-Dubrovsky Equations
    Bintao Cao
    Acta Applicandae Mathematicae, 2010, 112 : 181 - 203
  • [6] Explicit and exact travelling wave solutions for Konopelchenko-Dubrovsky equation
    Li, Bacui
    Zhang, Yufeng
    CHAOS SOLITONS & FRACTALS, 2008, 38 (04) : 1202 - 1208
  • [7] The -dimensional Konopelchenko-Dubrovsky equation: nonlocal symmetries and interaction solutions
    Ren, Bo
    Cheng, Xue-Ping
    Lin, Ji
    NONLINEAR DYNAMICS, 2016, 86 (03) : 1855 - 1862
  • [8] Infinitely Many Symmetries of Konopelchenko-Dubrovsky Equation
    LI Zhi--Fang
    RUAN Hang--Yu Department of Physics
    CommunicationsinTheoreticalPhysics, 2005, 44 (09) : 385 - 388
  • [9] Transverse spectral instabilities in Konopelchenko-Dubrovsky equation
    Bhavna
    Pandey, Ashish Kumar
    Singh, Sudhir
    STUDIES IN APPLIED MATHEMATICS, 2023, 151 (03) : 1053 - 1071
  • [10] Abundant multisoliton structures of the Konopelchenko-Dubrovsky equation
    Zhao, Hong
    Han, Ji-Guang
    Wang, Wei-Tao
    An, Hong-Yong
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (12) : 1381 - 1388