Semi-active control of walking-induced vibrations in bridges using adaptive tuned mass damper considering human-structure-interaction

被引:98
|
作者
Wang, Liangkun [1 ,2 ]
Nagarajaiah, Satish [2 ,3 ]
Shi, Weixing [1 ]
Zhou, Ying [1 ,4 ]
机构
[1] Tongji Univ, Dept Disaster Mitigat Struct, Shanghai 200092, Peoples R China
[2] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA
[3] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
[4] Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Serviceability problem; Human-structure interaction; Tuned mass damper; Variable mass; Adaptive control; Stochastic walking-induced vibrations; VERTICAL VIBRATIONS; MULTIPLE PEDESTRIANS; DYNAMIC INTERACTION; STIFFNESS; FRAMEWORK; MODEL; FOOTBRIDGE; EXCITATION; IDENTIFICATION; FORMULATION;
D O I
10.1016/j.engstruct.2021.112743
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Tuned mass dampers (TMDs) are used to control pedestrian induced vibrations of pedestrian bridges as traditional vibration control devices. A TMD can have a good control effect when it is tuned to the natural/vibrational frequency of the primary system. However, a traditional passive TMD is sensitive to the frequency deviation. Actual human-induced excitations can cover a wide frequency range and are stochastic virtually, which will cause a decrement in its control effect. The human-structure interaction (HSI) can also change the structural characteristic and lead to a mistuned TMD. To propose a more robust and effective TMD in solving the serviceability problem, a semi-active independent variable mass TMD (SAIVM-TMD) is introduced in this study. Wavelet transform (WT) is used to identify the structural instantaneous frequency, then, the mass of SAIVM-TMD is adjusted according to the WT - based control algorithm by actuating devices in real time. To highlight the control effect of SAIVM-TMD, a simply supported pedestrian bridge is carried out as a case study. The bridge is simplified to a Euler-Bernoulli beam according to an in-situ test and model analysis. Then, its dynamic responses under different controllers are analyzed and compared under single pedestrian periodic and stochastic walking-induced excitations. HSI is considered and a pedestrian is modulated as a moving spring-mass-damper (SMD) model. Then, a case under crowd-induced stochastic excitation is proposed. A passive TMD optimized for a pedestrian bridge under moving loads is used for comparison. Results show that SAIVM-TMD always has the best performance because it can adapt to the structural vibrational frequency changes efficiently and retune.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] The Semi-Active Control Considering Structure-Basement-Pile-Soil Interaction
    Li, Yantao
    Zhou, Zhanxue
    ADVANCES IN STRUCTURES, PTS 1-5, 2011, 163-167 : 2780 - 2786
  • [42] Lateral soil pile structure interaction assessment for semi active tuned mass damper buildings
    Ghorbanzadeh, Mohammad
    Uygar, Eris
    Sensoy, Serhan
    STRUCTURES, 2021, 29 : 1362 - 1379
  • [43] Bi-directional semi-active tuned mass damper for torsional asymmetric structural seismic response control
    Wang, Liangkun
    Zhou, Ying
    Nagarajaiah, Satish
    Shi, Weixing
    ENGINEERING STRUCTURES, 2023, 294
  • [44] Control method based on energy absorption rate of semi-active controlled tuned mass damper adaptable to a structure' s period fluctuation
    NAKAI T.
    KURINO H.
    Journal of Structural and Construction Engineering, 2021, 86 (782): : 565 - 576
  • [45] Passive and semi-active control of an offshore floating wind turbine using a tuned liquid column damper
    Coudurier, Christophe
    Lepreux, Olivier
    Petit, Nicolas
    IFAC PAPERSONLINE, 2015, 48 (16): : 241 - 247
  • [46] Vibration control of structure using active tuned mass damper: A new control algorithm
    Safakhaneh, Motasam Mousaviyan
    Farzam, Maziar Fahimi
    Ahmadi, Hamzeh
    Farnam, Arash
    JOURNAL OF VIBRATION AND CONTROL, 2024,
  • [47] Decentralized control of vibrations in wind turbine blades using multiple active tuned mass damper
    Cong, Cong
    Yang, Bing
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2019, 40 (01): : 179 - 184
  • [48] DYNAMIC RESPONSE CONTROL OF 2-D JACKET STRUCTURE USING SEMI-ACTIVE TUNED LIQUID COLUMN DAMPER (TLCD)
    Paul, Bapon
    Kumar, Deepak
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 2, 2024,
  • [49] Seismic adaptive control of building structures using active friction tuned mass damper
    Saadatfar, Saman
    Emami, Fereshteh
    Khatibinia, Mohsen
    Eliasi, Hussein
    STRUCTURES, 2024, 70
  • [50] Seismic Response Control of a Nonlinear Tall Building Under Mainshock-Aftershock Sequences Using Semi-Active Tuned Mass Damper
    Wang, Liangkun
    Zhou, Ying
    Shi, Weixing
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2023, 23 (16N18)